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Significance
Leaching / Dissolution behaviour and kinetics of 
Al(III)-containing Minerals such as Gibbsite, 
Bayerite, Boehmite & bauxite ores in Aqueous 
Media is of interest & importance to several 

industries:
High Nuclear Waste Processing

Minerals Processing: Bayer Process Alumina 
Refining 

Minerals Weathering: Environmental issues
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Amorphous/gel Al(OH)3 phase

Bayerite (α−Al(OH)3) 

Gibbsite (γ-Al(OH)3) 

Boehmite (γ-AlOOH)

Diaspore (α-AlOOH)

Decreasing

Solubility

in aqueous (alkaline 

or acidic) media –: 
Al(III) is amphoteric

Al(III)-containing Hydroxide/oxides Phases
& their Relative Solubilities

Alumino-silicate phases (amorphous, Zeolite,
Sodalite & Cancrinite) phases may co-exist

The phase(s) that may exist and which dissolve will depend upon
prevailing solution chemistry, temperature, pressure & hydrodynamics



Ian Wark Research Institute
Australian Research Council Special Research Centre
For Particle and Material Interfaces TM

1. What are the mechanisms of Al(III) hydroxide dissolution ?
2. Which solution species are present in Al(III) 

undersaturated caustic or acidic  liquors? 
3. What is the nature of the interfacial layer which forms and 

evolves?

4. What are the rate controlling factors for Al(OH) crystal 
dissolution?

5. What kinetics or rate laws of dissolution can be established for
different Al(III) hydroxide phases

6. What “constitutive” or “colligative” property roles do dissolved
ions of metal salts (Na+ vs K+) and organics play in the dissolution 
process and impact upon the rates?

Fundamental Knowledge gap & Questions
underpinning Significance of dissolution studies
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Specifically what solution species are present in Al(III)
rich solutions at high pH or caustic levels?   
It always a problem determine  the chemical 
potentials, activity and activity coefficients of 
Al(III) speciation at high ionic (>> 1 M) 

2. What is the role of water activity?   
Consider 2 solutions containing the different 
molar concentrations or ionic strength of caustic 
(e.g. NaOH)  but similar concentrations of 
dissolved aluminium.

3  Do reliable equilibrium Al(III) solubility data & 
activity diagrams exist at operating conditions of 
interest?

Dissolution Rate Laws issues to consider: Solution 
Speciation, phase & thermodynamic properties
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Solution Speciation & thermodynamic properties

This is what we know today
About caustic aluminate liquors
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Al(III) Speciation & thermodynamic properties

This is what we know today
About caustic aluminate liquors
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Al(III) Speciation &  Water activity may vary 
with ionic strength
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R = f{seed surface area .speciation, impurities,   
solubility/undersaturation water activity/ionic      
strength, Temperature, Agitation rate, Pressure     
… + etc.}

Kinetics = the rate at which the dissolution reaction 
mechanism proceeds

Kinetics of Dissolution,R,: Rate laws 
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Gibbsite

Al2(III)

Al(III)

Al(III)

Al2(III)

Interface Bulk solution
Crystal

OH-

OH-

OH-

OH-
OH-

OH-

OH-
OH-

OH-OH-

Gibbsite Crystal Dissolution behaviour in NaOH Solution

Na+-OH- species volume 
diffusion to Al(OH)3 surface 
sites. 

OH- attack of the Al(OH)3
Octahedral structure

Al(OH)3 o octahedral  to 
tetrahedral Al(III) 
monomeric (Al(OH)4-) & 
dimeric species

What are the mechanisms of Al(III) hydroxide dissolution?

Gibbsite: Al(OH)3(s)  +  xNaOH(aq)  => NaAl(OH)4(aq) +yNaOH(aq) 
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a) Diffusion of attacking ions (OH-) from the bulk solution to the 
Al(OH) particle surface (volume diffusion)

b) Ions movement at the crystal surface between sites (surface 
diffusion)

c) Adsorption of the attacking OH- ions at the surface (adsorption)

c) Solution/Solid interface reactions* at preferred dislocation/kink
sites.

e) Detachment and desorptive transfer of reaction products from the
crystal/solid surface (desorption)

f) Diffusion from the particle surface to the bulk (volume diffusion).

*Solvation/desolvation and complexation of OH- & Al(III) 
species: hydrated inner & outer sphere complexes.

Modelling dissolution of Al(OH): Elementary reaction steps:
(Dhillon, 1971; Linge, 1975; Jones and Linge, 1975, Addai-Mensah et 
al., 2000)
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C

Ce

Ci

δ

Volume diffusion Rd = kd.(Ci-C) -(1
kd = D/Vδ

Surface reaction Rr = kr.SA.(Ce
n-Ci

n) -(2

Solid Solution

Kinetics of Dissolution / Rate laws 
2 Resistances-in-Series Rate Laws

D = diffusion  coefficient; V = Volume of solution
Rd = mass transfer rate constant, SA= Surface Area
Rr = chemical reaction rate constant
n = reaction order,  1 ≤ n ≤ 4 may apply
d = thickness of conc./ Nerst boundary layer

Total reaction resistance, 1/R = 1/kd + 1/ kr =(kr+ kd)/ kr.kd

Unless sufficient agitation rate is applied or power input is moderate 
to high, the 2 resistances of both steps will prevail during dissolution.   
Mass transfer resistance,1/kd, is only negligible at high agitation rate.
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Dissolution Rates: Empirical power Laws

Where volume diffusion is very fast, Rd >> Rr
Then dissolution rate              R = kr.SA.(Ce

n-Cn) -(4
or R = kr.SA.(Ce-C)n

Chemical reaction-controlled model

Where surface reaction is very fast (at very high 
Temperatures), Rr >> Rd
Then  dissolution rate              R = kd.(Ce-C) -(3

Nerst (1904) Eq. or Mass transfer or volume   
diffusion-controlled model

Very often, for Chemical reaction-controlled dissolution 
rate,the order n bears no relationship with the true 
elementary, rate determining steps or speciation 
stoichiometry. Hence is empirically determined. 
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Temperature low= 25 –65 oC, Low Solid content = 1 wt% gibbsite
At higher solid content, strong dependency on dissolution rate on 
caustic concentration  may be displayed – e.g. Glastonbury (1967) 

Gibbsite Crystal Dissolution behaviour in Caustic Medium
(Addai-Mensah et al. (2000)):
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Gibbsite Crystal Dissolution behaviour in Caustic Medium
(Addai-Mensah et al. (2006)):
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Gibbsite: ko =  4.6×105 and Ea = 100 ± 5 kJ/mol

Gibbsite & Boehmite.Dissolution Kinetics Models 

R  = SA· ko exp(-Ea/RT)(CNaoH)1.73

Rate  = R,   [g Al(III). cm-2 . sec-1]

(Chemical Reaction-controlled)

Solutions:  4 – 6 M NaOH NaOH Temp. = 50 – 100 oC
High seed charge = SA = 4880 m2/l Agitation rate = 300 rpm 
Strong NaOH dependence. (Glastonbury; 1967).

Boehmite: ko =  6.7×102 and Ea = 100 ± 5 kJ/mol
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Boehmite R =SA· ko exp(-65,000/T)(CNaoH)(aH20)0.5

Gibbsite: SA.ko =  3.0×1018 and Ea = 128.5 ± 5 kJ/mol

Gibbsite & Boehmite.Dissolution Kinetics Models 

Gibbsite R =SA· ko exp(-68,000/T)(CNaoH)aH20

(Chemical Reaction-controlled)

Solutions:  3 – 6 M NaOH NaOH Temp. = 41 – 100 oC
High seed charge = SA = 4880 m2/l Agitation rate = 300 rpm 
NaOH and Water activity dependence. 

Model by Scotford and Glastonbury; 1972.

Boehmite: SA.ko =  4.5×1015 and Ea = 120 ± 5 kJ/mol
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Temperature (T,oC )  Rate Constant (k) [(mg/kg solution)-1.m-2.min-1)
30.0 4.43
50.0 40.12
70.0 348.84
90.0 2995.00

R= d∆C/dt = kr.SA.(CeAl
2-CAl

2)   

Log[(CeAl+CAl)/(CeAl-CAl)] = 2.SA.CeAl .kr.t

ko exp(-Ea/RT)          Ea =  95 -100 ± 5 kJ/mol
(Chemical Reaction-controlled)

Gibbsite Crystal Dissolution kinetics in Caustic Medium
Solutions:  2 – 8 M NaOH NaOH, SA = 30 -60 m2/l,  Temp. = 30 –
90 oC, Addai-Mensah et al.2000.
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Dissolution rate R (at 50 oC) = 8.18 ×10-10 g Al . cm-2 . sec-1

Dissolution rate R (at 90 oC) = 1.1 ×10-7 g Al . cm-2 . sec-1

The dissolution rates of Boehmite crystals 
will be ~ 600 – 700 times slower 

than those of gibbsite given above.

Gibbsite & Boehmite.Dissolution rates

Gibbsite Vs Boehmite: Example 
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e.g. R  = SA· ko exp(-Ea/RT)(CNaoH)1.73    (where p = 0)

R  = SA· ko exp(-Ea/RT)(CNaoH)n.ap
H20

aH20 =water acivity,  p= exponent of water activity

CNaoH =Caustic activity/concentration,  
p= exponent of caustic activity/concentration

Ea   =  95  - 140 kJ/mol, similar for most AlOH phases
but beware,  ko values differ dramatically,
koBayerite> koGibbsite > koBoehmite > koDiaspore

Note: Dissolved impurity ions if present will exert their influence

Gibbsite, Boehmite &. Diaspore Dissolution rates


