In-Service Inspection Program for the SRS Waste Tanks: Update

9/29/09

Karthik Subramanian
SRR, Office of the Chief Engineer
Acronyms

- SRR: Savannah River Remediation
- SI: Structural Integrity
- ISI: In-Service Inspection
- Kgal: Thousands of gallons
- Mgal: Millions of gallons
- SRNL: Savannah River National Laboratory
- SST: Single Shell Tank
- DST: Double Shell Tank
- VSC: Vapor Space Corrosion
- GAO: Government Accountability Office
- DNFSB: Defense Nuclear Facilities Safety Board
- TSIP: Tank Structural Integrity Panel
- SCC: Stress Corrosion Cracking
- AUT: Automated Ultrasonic Inspection
• SRR Committed to Safety and Security Excellence

• Still THE priority

• SRR will continue the SRS safety tradition

• Security is like safety: SRR will keep it front and center
Outline

• Calendar Year 2008 Inspection Results
• Waste Tank Design
• Structural Integrity (SI) Program
• Corrosion Control Program
• In-Service Inspection (ISI) Program
• SRR Program Status
CY2008 Inspection Results

- 6782 photographs
- 1633 visual/video inspections

- Two new leaksites identified
 - Tank 5 (during final cleaning) and Tank 12 (during waste removal)
 - Consistent with known degradation mechanisms in non-compliant, old-style Type I/II tanks with partial secondary containment
 - Specific response/communication plans during waste removal and cleaning activities
Waste Tanks

- **Type I (12)**
 - Old Style
 - 750 kgal
 - 1951-1953

- **Type II (4)**
 - Old Style
 - 1.0 Mgal
 - 1955-1956

- **Type III (27)**
 - New Style
 - 1.3 Mgal
 - 1966-1981

- **Type IV (8)**
 - Old Style
 - 1.3 Mgal
 - 1956-1960
 - (2) have been closed
 - No active leaksites today

- **24 Old Style Tanks**
 - Type I/II: partial secondary containment
 - Routine visual inspections of annulus
 - Monitor and visually inspect during waste removal activities
 - Type IV: single shell tanks (SST)
 - Routine internal visual inspections
 - Up to 50 years old
 - Do not have full secondary containment

- **27 New-Style Tanks**
 - Full secondary containment
 - No leakage history
 - Receive all new waste
 - Used for all processing activities
 - Comprehensive inspection program
 - Visual inspections
 - Volumetric inspection

- **Waste Tanks**
 - (24) Old Style Tanks
 - Type I/II: partial secondary containment
 - Routine visual inspections of annulus
 - Monitor and visually inspect during waste removal activities
 - Type IV: single shell tanks (SST)
 - Routine internal visual inspections
 - Up to 50 years old
 - Do not have full secondary containment
 - (2) have been closed
 - No active leaksites today

- **Waste Tanks**
 - (27) New-Style Tanks
 - Full secondary containment
 - No leakage history
 - Receive all new waste
 - Used for all processing activities
 - Comprehensive inspection program
 - Visual inspections
 - Volumetric inspection
History of Tank Farms SI

- Corrosion Technology Exchange (SRNL)
- TSIP Commissioned
- SRS SI Topical Report
- 1st TFA SI Workshop
- DST Chemistry Optimization Workshop
- DST Expert Panel Commissioned
- VSC Workshop I
- 3rd TFA SI Workshop
- VSC Workshop II
- GAO Report on Hanford SSTs
- DOE Order 435.1
- Hanford DST Liquid Level Workshop
- DNFSB 2001-1 Recommendation
- 2nd TFA SI Workshop
- Hanford Life Extension Panel
- Tank SI Workshop
- SST SI Panel Commissioned

• Waste tanks provide critical interim containment for waste prior to processing and permanent disposal
• Comprehensive integrated approach to maintaining structural integrity of tanks, a critical component of operations
• Evolving program to successfully address emerging issues and preclude consequential degradation
Degradation Mechanisms

- Primary mode of degradation is nitrate-induced stress corrosion (SCC) cracking near fabrication welds or repair welds
- Occurred early in service in non-stress relieved Type I/II Tanks
- Type III Tanks have no known leaksites
 - Better materials of construction
 - Post-weld heat treatment to relieve weld residual stresses
- Corrosion control program to preclude further degradation
• Maintain corrosion inhibitors
 – Envelope of nitrite, hydroxide, nitrate concentrations

• Maintain temperatures
 – Concentration dependent temperature limits
Comprehensive Inspection Program

• Visual Surveillance
 – Still photography – (≈5000 photos/year)
 – Wide Angle
 – Direct
 – Video Camera Inspections (over ≈1000 video/visual exams/year)

• In-Service Inspection Program
 – NDE inspections included remote automated ultrasonic (AUT) inspection supplemented by remote visual inspection.
Comprehensive Inspection Program

• Type I/II tanks
 – No active leaksites
 – Use of conductivity probes in annulus
 – Routine visual inspections of annulus
 – Monitor and visually inspect during waste removal activities

• Type III/IIIA tanks
 – Comprehensive visual inspection program
 – Comprehensive volumetric inspection program
Visual Inspections

- Visual evidence of changes in tank component appearance
 - Leak sites
 - Corrosion
 - Abnormal conditions
Ultrasonic Inspections

- **Historical Volumetric Wall Measurements**
 - Data collection initiated in 1967
 - Collected over 24,000 spot measurements thru 1985

- **NEW PROGRAM 1st CYCLE COMPLETED**

- All 27 Type III tanks inspected with new program
- Examinations look for wall thinning, pitting, and Stress Corrosion Cracking
- Type II Tank 15 inspected twice
- Inspect primary and secondary walls
- Formal methodology for disposition of results

- Access thru small-diameter riser
- On-board cameras
Probe travels over 1 mile during a tank inspection.
• Consistent with understanding of waste chemistry and known mechanisms
• One-riser inspections as likely to find pitting as four-riser inspections
• No reportable, service induced indications (i.e., wall thinning, pitting, or cracking) on the primary tank wall.
• Revealed incipient pitting and non-reportable indications on the interior of the few primary tank walls.
 – Most are pre-service
• Revealed reportable wall thickness and locally thin areas on the secondary wall and floor.

<table>
<thead>
<tr>
<th>Tank #</th>
<th>Inspection Year/FY</th>
<th>Inspection Type</th>
<th>Incipient Pitting Indications</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>2004 / A</td>
<td>A</td>
<td>One 0.35” diameter pit 0.036” deep.</td>
<td>Isolated, broad shallow pitting</td>
</tr>
<tr>
<td>29</td>
<td>2006 / FS</td>
<td>FS</td>
<td>Four 0.5” diameter pits 0.019 – 0.065” deep</td>
<td>Isolated, broad shallow pitting</td>
</tr>
<tr>
<td>31</td>
<td>2003 / A</td>
<td>A</td>
<td>One ~0.37” diameter pit 0.046” deep</td>
<td>Isolated, broad shallow pitting</td>
</tr>
<tr>
<td>32</td>
<td>2003 / FS</td>
<td>FS</td>
<td>Three pits, max 0.75” diameter and 0.055” deep</td>
<td>Isolated, broad shallow pitting</td>
</tr>
<tr>
<td>49</td>
<td>2005 / A</td>
<td>A</td>
<td>A band of pitting ~85 to 114 inches tank elevation. Up to 0.75” diameter and 0.040” deep.</td>
<td>Broad shallow pitting</td>
</tr>
</tbody>
</table>

* FS = Full Scope A= Augmented
Baseline Data: Incipient Pitting Definition

- Incipient pitting is a term used to describe small pit-like indications prior to them becoming reportable or actionable
- The term describes a shallow indication
- The term does not necessarily imply that the pit has recently developed or that it is still growing
- Many incipient pits may have developed pre-service
2nd Cycle ISI Plan

- Revised SRS ISI Program for waste tanks inspects all 27 Type III/IIIA tanks
 - Incipient interior tank wall indications
 - Wall thickness of secondary
 - Knuckle region in select tanks
 - High stress region: Tank 50

- Frequency
 - All 27 type III/IIIA tanks shall be inspected every 6-10 years
 - Tank 15 shall be inspected seven years after the most recent inspection
 - A formal review of the ISI program shall be performed every three years

- Acceptance Criteria outlines actions in response to indications consistent with national “Tank Structural Integrity Panel” recommendations
• Special inspection performed on Tank 29 to confirm assumption of circumferential uniformity of service-induced pitting

• One-strip inspection covers all historical interfaces (e.g., liquid-air) known to be the highest risk areas for corrosion

• Tank 29 inspected through all accessible risers (16) to provide the rigorous technical bases prior to launching of the next cycle of inspections
Summary

• The structural integrity program for the SRS tanks has over 50 years of successful operation
• Program aggressively addresses emerging issues
• Program proactively evolves in support of mission goals
• Technology-based evolution of programs
• POISED TO SUPPORT THE FUTURE
• Questions?