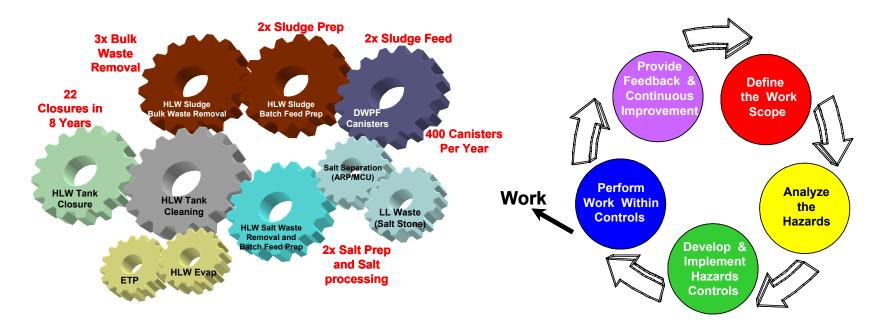


We do the right thing.

Liquid Waste Top Ten Program Risks

Date: July 26 2010

Presenters:


Doug Bumgardner, Savannah River Remediation

SRR-LWP-2010-00050

Program Risks not Hazard Management

We do the right thing.

Program Risks relate to increase in overall cost or schedule of Liquid Waste Project

Integrated Safety Management System

Manages Hazards

Liquid Waste Project Risk Management Approach

- Consistent with typical Project Management Process
- Covers entire Liquid Waste lifecycle
- Multiple categories: Business, Technical, Programmatic, etc.
- Risks change over life of project
- Real-time evaluation of risks and monthly review
- Annual formal Top-to-Bottom update of risks
 - Original Technical and Programmatic Risk Assessment Report issued in 2006
 - Revision 5 supports System Plan Revision 15

Grading of Programmatic Risks

We do the right thing.

Example Likelihood Criteria

Very	Likely	′ ≤ 10 y	vears
------	--------	----------	-------

Likely 10-25 years

Unlikely 25-50 years

Very Unlikely > 50 years

Figure 3 – Risk Level Matrix

	Very Likely	Low	Moderate	High	High	High	
(T) po	Likely	Low	Moderate	Moderate	High	High	
Likelihood (L)	Unlikely	Low	Low	Moderate	Moderate	High	
	Very Unlikely	Low	Low	Low	Moderate	High	
* No	n-credible			Low			

Example Consequence Criteria

Negligible

Negligible < 3 month delay

Marginal 3-12 months delay

Significant 1-2 years delay

Severe >2 years delay Marginal Significant Verv (Critical) Severe

Consequence (C

* Normally limited to assessing residual risks with Very Severe (Crisis) consequences

(Crisis)

Severe

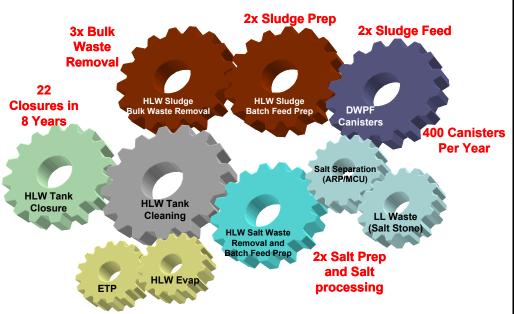
Example Risk Assessment Form

We do the right thing.

PBS SR-0014 Risk Assessment Form								
ID Number: 012	R	evision: 03	La	st Date Evaluated: 8/12/2009 Status: Active				
Statement of Residual Risk: Premature failure of installed spare equipment leads to canister production downtime while a new replacement is procured.								
Residual Likelihood:	Likely		Basis: Based upon the 20+ years of remaining operation of the DWPF, the potential for a premature failure of an installed spare is likely.					
Residual Consequence:	Significant	Basis: Premature failure of an installed spare is estimated to cause a canister production outage period judged to be up to 1 year in duration. Out-year residual impact of 1 year schedule delay, near-term residual impact of \$10M to procure a new major equipment spare.						
Residual Risk Level:	Moderate							
	NEAR TERM Resid	lual Impact		Basis of NEAR TERM Cost and Schedule Impacts:				
Residual Cost Impact (\$K):	Best Case 10,000	Most Likely 10,000	Worst Case 10,000	Basis - Near-term residual risk for all cases is the cost to procure a new major equipment spare. (\$10M)				
Residual Schedule Impact :	0	0	0					
	OUT YEAR Resid	ual Impact	_	Basis of OUT YEAR Cost and Schedule Impacts:				
Residual Cost Impact :	Best Case 0	Most Likely 225,000	Worst Case 450,000	Basis - Worst Case: Immediate premature failure of installed spare. Assume 1 year to procure and install replacement. Most Likely Case: Spare equipment operates for 6 months before failure. Procurement				
Residual Schedule Impact (Mos):	0	6 Mths	12 Mths	of a replacement begins upon installation of spare. Assume 6 additional months to complete procurement and install replacement. Best Case: Spare equipment operates for 12 months and does not fail until a suitable replacement is available. No significant canister production downtime is experienced.				
LIFE CYCLE Res	sidual Impacts (tota	of Near Term an	d Out Year)	Basis of <u>LIFE CYCLE</u> Cost and Schedule Impacts:				
Residual Cost Impact :	Best Case 10,000	Most Likely 235,000	Worst Case 460,000	Residual impact based on total life cycle				
Residual Schedule Impact (Mos):	0	6 Mths	12 Mths					
,	B. DWPF will produce	canisters at maxi	mum throughput for	the duration of the program (based on achievable melt rate, planned outages, and waste				

loading for sludge being processed). DWPF near-term canister production is based on revised sludge mass values. Production of salt-only cans is acceptable to DOE.

Event Comments: The risk of a premature DWPF melter failure is addressed under Risk 021. The failure to provide a spare DWPF melter is addressed under Risk 022.



Example Risk Status Report

		Risk		Status						
ID	Title	Level	Review Date	Transferred		tcceptable Risk	Minor Concern	Major Concern	Remarks	Content changed from last upda
34	DWPF Impacted by Chemistry/Rheology of Sludge Waste Feed	Low	4/21/201	0			0			ments being investigated. Research has entation of melter bubbler mixing is underway 2010.
036	Sampling and Analysis of Salt Feed to ISDP Shows SPF WAC Cannot be Met After Processing	Low	5/5/201	0		•			Batches are being sampled a	and to date they meet the WAC.
037	DWPF Impacted by Chemistry of Salt Waste Feed	High	4/21/201	0			0		Characterization data and op-	acterization is being evaluated. berating lessons learned during ARP/MCU timizing sludge batch compatibility with the essing at DWPF.
040	Salt Dissolution Results in the Precipitation of Gibbsite	Moderate	5/5/201	0		•			Investigating methods to avo	oid gibbsite formation.
041	Formation of Sodium Aluminosilicate in a Salt Tank	Moderate	5/5/201	0	-		0		Developing flowsheets and avoid criticality.	mathmatical models for salt removal that
042	Salt Waste Heel or Tank Annuli Waste Cannot be Processed Through SWPF	High	5/5/201	0			0		Developing a flowsheet with modifications.	additional feed treatment or processing
045	Higher Curie Sludge Impacts DWPF Canister Production	Low	5/6/201	0		•			Sludge batch sampling, blen are being performed.	ding strategy development and qualification
048	Sludge Physical Properties Cause Delays in Meeting Sludge Feed Objectives	Low	4/19/201	0			0		Physical characteristics of wa development of removal tech characteristics.	aste are being determined and used in nologies that can tolerate variability in waste
069	Higher Than Expected Cs Levels in Salt Solution Impact Processing	Low	5/5/201	0		•			Batches are being sampled a	and no concerns have been identified to date.
070	Rogue Constituents in SWPF Feed	Moderate	5/5/201	0			0		Evaluating the need for addit tank sequencing / blending s	tional sampling and testing and developing trategies.
071	Unknown Physical Properties in Heel Material During Mechanical Heel Removal	Low	4/20/201	0			0		ECC is being deployed to ha	ndle this risk.
074	MCU Feed Requirements not met by ARP Processing Strategy (Filter Breakthrough)	Low	5/5/201	0		•			Robust filter design provides	protection and a basis to accept this risk.

Current Top Ten

Area of Concern	Strategy to Address
1. Equipment Reliability	System Health Monitoring, Maintenance Program and Spare Parts
2. Major System Failure (for example, Melter or Evaporator)	System Health Monitoring, Spares, Development of Repair Techniques
3. Tank Space Availability when Needed	Integrated System Planning
4. Tank Leak Sites Reduce Useable Space	Structural Integrity Program
5. Characterization of Waste	Early sampling and analysis, Development of robust processes to accommodate varying composition
6. Technology Readiness	Testing, mock-up, lessons learned from DOE complex
7. Salt Waste Processing Facility Start-Up Delayed or Processing Rate Limited	Interim Salt Disposition Project, Supplemental Salt Treatment Processes
8. Meeting Tank Cleanliness Requirements for Closure	Use of new technologies included Enhanced Chemical Cleaning
9. Availability of Closure Documentation	Integrated Planning and Development with Stakeholders
10. Integration/Coupling of Execution Activities	Integrated System Planning, Integrated Operations and Projects Planning and Scheduling

Risk Profile Change Since July 2009

- System Health Reporting Program fully implemented, Activities to improve degraded system all tracked within facility schedules
- Placed Tank 25 in drop tank service for the 2F evaporator
- 200+ High Level Waste Canisters processed at Defense Waste Processing Facility
- ~510 kgal of Salt Solution processed through Interim Salt Disposition
 Project
- Number of tanks that are actively in Waste Removal/Chemical Cleaning/Closure process has increased to 15 of the 22 tanks that are being closed
- Enhanced Chemical Cleaning real waste testing and design in progress
- Ready to deploy melter bubblers in DWPF this fall
- Tanks 18 and 19 residual characterization in progress
- Preliminary planning for Supplemental Salt Treatment

Summary

- Consistent with typical Project Management Process
- Covers entire Liquid Waste lifecycle
- Multiple categories: Business, Technical, Programmatic, etc.
- Risk changes over life of program
 - Real-time evaluation of risks and monthly review
 - Annual formal Top-to-Bottom update of risks
 - Risk profile is improving
- No risks prevent program completion