Saltstone Disposal Facility
Performance Assessment Overview

Presentation to the Savannah River Site
Citizens Advisory Board
Waste Management Committee

Tom Robinson
Savannah River Remediation
Manager, Closure and Disposal Assessment
January 12, 2010

What is a PA?

• PA = Performance Assessment
• Performance Assessment = a key risk assessment tool used to inform closure and disposal decisions
 – Models fate and transport of materials over long periods of time to determine potential consequences
 – Utilizes informed assumptions
 – Provides most likely consequences of planned actions
• PA provides best estimation of what the dose consequences will be, both chemical and radiological, over time
 − Focused on determining “peak dose” - worst one-year period – or “peak concentration”
 − Reflects potential variation in parameters and identifies key parameters for which the model has the greatest sensitivity (importance)
Existing Disposal Units

Vault 1
Six 100’x100’ cells
Approximately 25’ high

Vault 4
Twelve 100’x100’ cells
Approximately 26’ high

Vault 2–Future Disposal Cells

11/20/2008
Site Prep

5/15/2009
Wall Panels

7/23/2009
Roof Form

10/14/2009
Cell Interior
SDF PA Development

• SRS initiated a PA revision in October 2007 per DOE O 435.1 to support disposal operations
• Revised PA accounts for a new disposal cell design, new research data since 2005 and incorporates new information related to the eight factors from the NRC Technical Evaluation Report (ML053010225) issued in December 2005
• Revision A was submitted for review by a DOE Savannah River Operations Office appointed team in March 2009
• Revision B was submitted for review by a DOE Low Level Waste Federal Review Group (LFRG) appointed team in June 2009
• The LFRG on-site review was conducted August 10-14, 2009 and NRC staff were observers
 - NRC issued observation report (ML092710477)
• Revision 0 was submitted to NRC and SCDHEC in November 2009

• Eleven Chapters and twelve appendices
 • Including disposal facility characteristics, performance analysis, analysis results, inadvertent intruder analysis, and results interpretation

• More than 290 figures and 170 tables of information in the main body of PA

• Volume 1 of the Revised PA (663 pages) and the appendices comprise over 2000 total pages
Hybrid Modeling Approach

- Modeling is a hybrid approach with the deterministic (PORFLOW) results as the baseline and the sensitivity/uncertainty analyses performed with a probabilistic code (GoldSim) to evaluate all parameters at once
- PORFLOW also used for one-off sensitivity analyses

Conceptual Model
Model Example: Closure Cap

Far-Field Flow Pathlines

Traces reach Gordon Aquifer which has a NW flow
• The PA development process is regulated by DOE Order 435.1
• Disposal requirements are based on:
 − DOE Order 435.1

Conclusions

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Limit</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE O 435.1-1 All-Pathways Dose</td>
<td>25 mrem/yr</td>
<td>1.4 mrem/yr</td>
</tr>
<tr>
<td>DOE O 435.1-1 Intruder Dose</td>
<td>500 mrem acute</td>
<td>N/A – acute</td>
</tr>
<tr>
<td></td>
<td>100 mrem/yr chronic</td>
<td>1.9 mrem/yr – chronic</td>
</tr>
<tr>
<td>DOE O 435.1-1 Air Pathways Dose</td>
<td>10 mrem/yr</td>
<td><4E-09 mrem/yr</td>
</tr>
<tr>
<td>DOE O 435.1-1 Radon Flux</td>
<td>20 pCi/m²/s At ground surface</td>
<td>2.0E-13 pCi/m²/s</td>
</tr>
<tr>
<td>DOE O 435.1-1 And Safe Drinking Water Act</td>
<td>Groundwater Protection - Maximum Contaminant Levels</td>
<td>Total β/γ 4 mrem/yr Total α 15 pCi/L Total U 30 mg/L Total Ra 5 pCi/L 1.16 mrem/yr 1.9 pCi/L 8.0E-9 mg/L 1.9 pCi/L</td>
</tr>
<tr>
<td>10 CFR 61.41 All-Pathways Dose</td>
<td>25 mrem/yr</td>
<td>1.4 mrem/yr</td>
</tr>
<tr>
<td>10 CFR 61.42 Intruder Dose</td>
<td>500 mrem/yr</td>
<td>1.9 mrem/yr</td>
</tr>
</tbody>
</table>
Summary

- SDF PA has been completed and is currently undergoing external review

- Planned SDF disposal activities result in peak year doses / concentrations well below regulatory requirements