

Advanced Simulation Capability for Environmental Management

Roger Seitz (End User Interface)

Paul Dixon (Multi-Laboratory Project Manager)

Justin Marble (DOE-EM Project Manager)

Tim Scheibe (Platform and Integrated Toolsets Lead)

David Moulton (Multi-Process HPC Simulator HPC Lead)

Mark Freshley (Site Applications Lead)

Stefan Finsterle (Platform and Integrated Toolsets Deputy)

Carl Steefel (Multi-Process HPC Simulator HPC Thrust Deputy)

Susan Hubbard (Site Applications Deputy)

SRS CAB FD&SR Committee Meeting June 11, 2013

Purpose

➤ Provide an overview of the DOE-EM sponsored project to develop the Advanced Simulation Capability for Environmental Management (ASCEM) to fulfill a Facilities Disposition & Site Remediation (FD&SR) 2013 Work Plan item

F Area Seepage Basins

ascemdoe.org

ASCEM Is Delivered Through a National Laboratory Consortium

Why Do We Use Models?

Improve our understanding of system behavior

- Projecting future migration of contamination (10s, 100s or 1,000s of years)
- Managing uncertainties identifying what is important
- Prioritizing data collection and monitoring activities
- Evaluating potential effectiveness of remediation and closure options
- Optimizing designs
- Regulatory compliance

Modeling Example

Challenges

- Move towards more standardized and consistent environmental modeling approaches across the DOE Complex
- Improve model support for decision-making and demonstrations of regulatory compliance during and at the conclusion of assessment efforts
- Provide tools that help to explain complex information in an understandable way
- Provide capability to explore problems in greater detail, where needed to address the most challenging remediation/disposal efforts

ascemdoe.org

Advanced Simulation Capability for Environmental Management (ASCEM)

- A State-of-the-art tool for predicting movement of contaminants through natural and engineered systems
- Freely available and expandable to incorporate existing modeling tools
- Designed to take advantage of modern computing architectures (e.g., multi-core) from laptops to supercomputers

User Interactions Helped Shape ASCEM Development

The ASCEM team has actively reached out to a variety of potential users around the DOE Complex for suggestions, including regulators, programmatic/management, and modeling practitioners

> Used recommendations as input to requirements

- A Graded Approach is needed to allow the use of the appropriate level of complexity to support a given decision.
- Consider role of modeling as input for regulatory decision making.
- Take advantage of new tools to reduce reliance on simplifications.
- Recognize increased data needs as model complexity increases.

ASCEM Key Components

- ➤ Akuna The graphical user interface and platform with the tools to help manage data, setup and run models, and process results from simulations
- ➤ Amanzi The computational engine that solves all of the equations needed to model movement of water and contaminants in the environment
- Akuna and Amanzi integrate many tools that have been developed through other activities

Mac/Windows Interface

Example Akuna Tools

Mesh Generation

ascemdoe.org

Example Amanzi Results

