

Salt Waste Processing Facility Baseline Status

Pamela Marks

Federal Project Director Salt Waste Processing Facility DOE-Savannah River

Savannah River Site Citizens Advisory Board Meeting September 22, 2015

- Fulfill a 2015 Waste Management Committee Work Plan topic
- To brief the Citizens Advisory Board (CAB) on the status of the Salt Waste Processing Facility (SWPF) Project.

Acronyms

- ARP Actinide Removal Process
- ASME American Society of Mechanical Engineers
- CAB Citizens Advisory Board
- CD-0 Critical Decision 0, Approve Mission Need
- CD-1 Critical Decision 1, Approve Alternative Selection and Cost Range
- CD-2 Critical Decision 2, Approve Performance Baseline and Critical Decision 3A, Approve Limited Construction / Long Lead Procurements
- CD-3 Critical Decision 3, Approve Start of Construction
- CD-4 Critical Decision 4, Approve Start of Operations or Project Completion

- DWPF Defense Waste Processing Facility
- DSS Line Decontaminated Salt Solution
- LW Liquid Waste
- MCU Modular Caustic Side Cesium Extraction Unit
- NGS Next Generation Solvent
- ORR Operation Readiness Review
- SRNL Savannah River National Laboratory
- SWPF Salt Waste Processing Facility
- WTL Waste Transfer Line

Salt Waste Processing Facility

PARSONS

Parsons is the contractor for the SWPF project [design, construction, commissioning and operation for one year]

This critical facility will:

- Reduce radioactive waste volume by safely separating high-activity fraction from lowactivity fraction of the radioactive liquid salt waste stored in underground tanks at the Savannah River Site and re-turning high-activity waste fraction for vitrification at the Defense Waste Processing Facility (DWPF).
- Utilize the same radioactive waste removal processes as Interim Salt Processing Facilities (Actinide Removal Process/ Modular Caustic – Side Cesium Extraction Unit (ARP/MCU) – Pilot Facility)
- Process over 90% of Tank Farm liquid radioactive waste
 - 97 million gallons after adding liquid to waste (dissolution) to facilitate processing
- Have a nominal capacity of 7.3 million gallons per year

OFFICE OF

ENVIRONMENTAL

SWPF Process

Savannah River Site Liquid Waste System

OFFICE OF

ENVIRONMENTAL

NAGEMENT

Waste Transfer Line Installation

SWPF Laboratory

- SWPF Laboratory provides full capability to support plant operations for both Waste Acceptance compliance and process chemistry control
- Laboratory occupies approximately 8,000 square feet of floor space
- A shielded hot cell with 4 work-stations provides capability for sampling and processing high curie content samples.
- 11 glove-box/radio-hood lines contain analytical equipment for organic, inorganic and radiochemistry analysis needs.
- A fully contained transfer system allows safely moving samples from the hot cell to any the glove-box/radio-hood lines and between lines as needed.
- A co-located repair area is included to maintain hot cell manipulators.

SWPF Construction Progress

OFFICE OF

ENVIRONMENTAL

GEMENT

Technology Center Laboratory Expansion

SWPF Testing Activities

OFFICE OF

ENVIRONMENTAL

AGEMENT

Liquid Waste Scope Required to Start SWPF

Blend and Feed

- Provide raw salt solution (RSS) feed for SWPF
- Equip one existing tank with blending capability
- Equip one existing tank as the SWPF Feed Tank
- Provides transfer piping for RSS transfers to SWPF

East (ETL) and West (WTL)Transfer Lines

- Tie-ins of new underground SWPF piping to existing Liquid Waste piping
- ETL tie-in to provide path from SWPF to H-Tank Farm (HTF)
- WTL tie-ins provide path between SWPF, HTF, and DWPF
- Significant outage to execute scope
- Soil borings completed

- Improve method to remove higher curie waste and material from DWPF Lab
- Approved design input documents and issued
 Preliminary Material Handling
 Diagram
- Performed waste characterization calculation for future waste

DWPF Modifications

- Allow receipt of high activity effluent streams from SWPF
- Expanding glass composition to support MST Strikes at SWPF Complete
 Consolidated

Consolidated Hazards and Documented Safety Analyses

 Temperature interlock and automated shut off of key equipment within 511-S

Near Term Priorities

Construction Completion

- System Turnovers from Construction to Testing
- Declaration and Acceptance of Construction
 Completion
- Preparations to initiate System Testing / Commissioning
 - Development and Approval of System Test Procedures
 - Management Self Assessment to ensure Readiness to Test
 - Operations Staffing / Training
- Alignment of DOE Oversight for Testing and Commissioning

Looking to the Future

- High degree of technical confidence
- Maintain safety, cost and schedule performance
- Integrate NGS and High Sodium processing to enhance throughput
- Optimize facility operability
- Maintain integration with the Liquid Waste Program
- Minimize Liquid Waste lifecycle costs full solution to SRS Tank Closure

Testing on Full-Scale Equipment at Technology Center in Aiken

The SRS is poised for success with a complete Liquid Waste solution path

- DOE-SR has established a sound and integrated clean-up strategy
- *SRR* has demonstrated the capability to clean and close tanks, prepare and make glass at high capacity, and safely prepare and transfer waste feeds
- *SRNL* has supported success through technology innovation, technology deployment and operations optimization
- *Parsons* is ready to deliver the technically mature and high capacity SWPF that is the keystone to the next major DOE-EM clean-up success