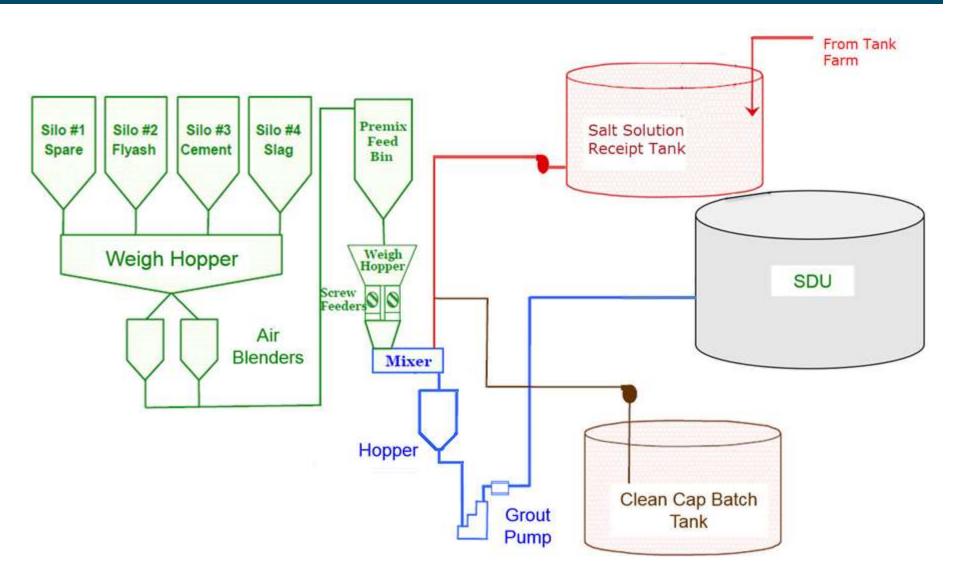


September 2019 CAB Meeting September 23, 2019

RELIABILITY ENHANCEMENTS AT THE SALTSTONE PRODUCTION FACILITY

Aaron V. Staub DWPF Melter and Saltstone Engineering Manager


SRR-WSE-2019-00019

- Process Overview
- Facility Background
- Enhanced Low Activity Waste Disposition (ELAWD) Project Technical Approach
- Major Process Equipment
- Residual Reliability Challenges and Associated Modifications
- Summary
- Q&A

Process Overview

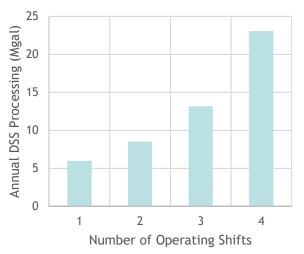
Facility Background

- Facility commissioned in 1990
 - Original design basis capacity for 6Mgal/year of decontaminated salt solution (DSS)
 - Days-only operating schedule due to high instantaneous processing rate

Salt Program delayed in mid-1990s

- Operation limited to small volume receipts from Effluent Treatment Facility
- Facility generally destaffed, operated for brief campaigns when sufficient waste inventory had accumulated
- Interim Salt Disposition (ISD) initiated mid-2000s
 - Typical throughput of 1-2Mgal/year of DSS
 - Radionuclide content of DSS higher than original design basis, forced redesign of several major process components
- Operational Experience in 2009-2010 showed unsatisfactory reliability, repeated pluggage occurrences at mixer outlet and grout pump hopper outlet
 - Enhanced Low Activity Waste Disposition (ELAWD) Project initiated to improve reliability

ELAWD Technical Approach


Phase I

- Modifications necessary to ensure repeatable and reliable operations from day to day
 - Larger grout pump hopper with larger inventory to better accommodate short-term flow deviations
 - Modified shutdown automation to eliminate timer-based actions in favor of process indications
 - Spare mixer procurement to allow for rapid changeout
- Field installation in 2012
- Highly successful, zero system pluggages since completion of Phase I

Phase II

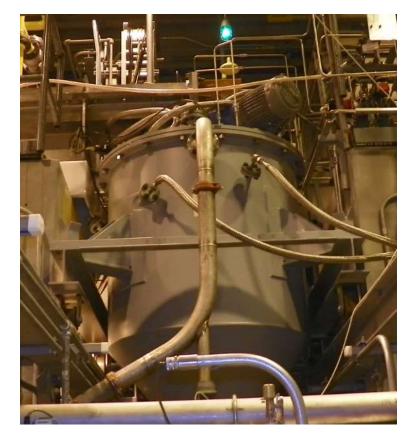
- Modifications necessary to support higher annual throughput anticipated from the Salt Waste Processing Facility
 - Balance of Plant modifications for extended shift operations
 - Upgraded silo dust collector to allow for simultaneous truck unloading
 - Multiple modifications to eliminate equipment obsolescence
 - Process Air Compressors
 - Premix Screwfeeders
 - Improved aeration flow to silos to increase storage capacities

SPF Production Rate

Major Process Equipment

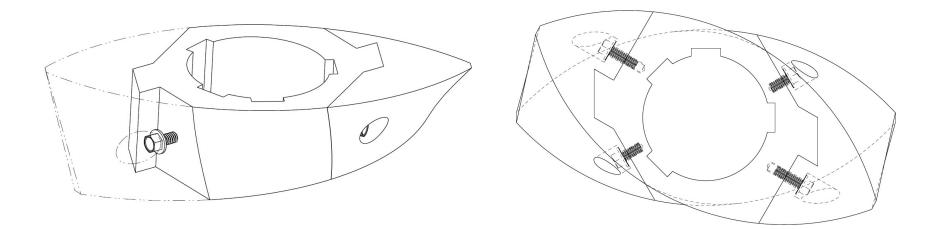
Dry Feed Silos

Major Process Equipment


Saltstone Mixer

Major Process Equipment

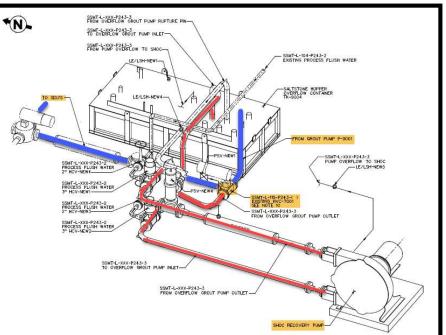
Grout Pump Hopper and Grout Pump



- Abrasive wear of paddle tips upstream of salt solution inlet
 - Results in accumulation of solid grout around inner circumference of mixer barrel
 - Causes flow restriction which leads to accumulation of premix in feed chute
 - Design changes implemented for detection/monitoring
 - Requires replacement of worn paddles (Presently every 2.5-3M gal DSS, four week outage)

- Resolution involves redesign of mixer internals
 - Currently evaluating the replacement of paddles with additional screw feeder sections
 - Next step involves a redesign to the affected paddles with a two-piece design
 - Evaluate abrasion resistant materials for tips- Increase service interval to >6Mgal
 - Reduce outage time to 1 week

- Foreign material an inherent risk with dry feeds
- Magnetic separators used to minimize inclusion into process
- Mixer inspections show separators not 100% effective


- Upon loss of hose integrity, process is shut down and critical equipment flushed
- Pump heads are piped to an overflow container
 - Container volume limited to 450 gal by overhead crane capacity
 - Desired flush volume approx. 1800 gal
 - Balance of flush volume directed to drain tank adjacent to Salt Solution Receipt Tanks
- Recovery requires outage to perform piping inspection/replacement and repair/replacement of grout pump

- Resolution involves installation of a separate recovery pump to evacuate overflow container and return flush material to transfer line and out to SDU
 - Multiple overflow containers not feasible due to space constraints within process room
 - Provides for complete flushing of affected piping, minimizes repair scope

- Expectations of the Saltstone Facility have varied significantly over the past 30 years
- Operational experience during ISD identified several vulnerabilities that would have limited SWPF production
- ELAWD Phase I ensured the reliable startup and shutdown of the process
- ELAWD Phase II is addressing obsolescence issues and improving dry material unloading and storage to support SWPF throughput
- Facility is actively pursuing modifications to address conditions that are the drivers of extended facility outage time