Double Door Transfer Port Use to Maximize ALARA in Contained Transfer Operations

P. A. Westover and B. M. Allen
SRNL

S. D. Chunglo
La Calhène, Prescott, AZ

Savannah River Site ALARA Workshop
May 2-3, 2005
The transfer of materials between gloveboxes has often been associated with increased dose or exposure.

WHY:
- The nature of the transfer operation, Simplicity affects the chance of dose or exposure. (KISS)

What are the options to improve ALARA
- How the Double Door Transfer Port (DPTÉ™) meets the needs.
ALARA Improvements in Contained Transfer

- **Nature of Operation**
 - Bag in / Bag out

 - Considerable care required
 - Normally, much Personal Protective Equipment
 - Multiple operators
 - Multiple steps
 - Considerable Process Waste Generated
 - **Operation Quality based on Operator Knowledge and Performance**
 - NOT EXACTLY SIMPLE
ALARA Improvements in Contained Transfer

- **Nature of Operation**
 - Bag in / Bag out
 - Airlock / Open Hood

- Considerable care required
- Normally, much Personal Protective Equipment
- Multiple steps
- Multiple operators
- Considerable Process Waste Generated
- **Operation Quality based on Operator Knowledge and Performance**
- NOT EXACTLY SIMPLE
ALARA Improvements in Contained Transfer

Nature Of Operation
- Bag in / Bag out
- Airlock / Open Hood
- DPTE™

- Considerably Fast yet Safe
- PPE may not be required
- Few simple steps
- Single operators can perform even drum transfer
- Very little if any process waste generated
- Interlocks prevent containment breach
- **Operation Quality is consistent**
- SIMPLE AND SAFE

DPTE™ TRU Waste System
ALARA Improvements in Contained Transfer

- **Nature of Operation**

- **Methods to improve the safety and ALARA of operations**

 1. **Administrative Controls**
 - **Benefits**
 - Improved ALARA and Safety
 - **Drawbacks**
 - Made process more tedious
 - Drives good operators away from job
 - Increased training
 - Simplicity is degraded
ALARA Improvements in Contained Transfer

- Nature of Operation
- **Methods to improve the safety and ALARA of operations**

1. Administrative Controls
2. Engineered Controls
 - Benefits
 - Improved ALARA and Safety
 - Sometimes more efficient
 - Sometimes simplifies operations
 - Drawbacks
 - Sometimes less efficient
 - Sometimes more costly
 - Sometimes simplicity is degraded
ALARA Improvements in Contained Transfer

The Engineered DPTE™ Solution

- Mechanically / Electrically Interlocked
- Electrically Sensored Options
- PE or Stainless Steel Doors and Containers
- Safety Transport Covers

Designed for contained Maintainability

[I] Safety Transport Covers
ALARA Improvements in Contained Transfer

- The Engineered DPTE™ Solution for

 α / β Containment

 with γ shielding

 [PADIRAC]

- [B] Pneumatic or Electric Actuation
- [D,E] Manipulator Maintainable

PADIRAC In Operation

Type A / B Transportainers
ALARA Improvements in Contained Transfer

- The Engineered DPTE™ Solution
 TRU Waste Handling and Packaging

- No Bags, Tapes, Ties, or Sharps padding
- Less Time Handling, Manipulating, and Disposing of Waste
- No Containment Breach
ALARA Improvements in Contained Transfer

- The Engineered DPTE™ Solution

TRU Waste Handling and Packaging
ALARA Improvements in Contained Transfer

- The Nature of the Operation
- Methods to improve the safety and ALARA of operations
 1. Administrative Controls
 2. Engineered Controls
 a) A Defined Containment Ratio (CR) can be determined for a controlled repeatable operation like the DPTE™ using surrogate material testing
 b) DPTE™ was tested with a 0.15 micron particle size uranine aerosol
 i. Multiple operations performed (connect, open-close doors, disconnect)
 ii. Containment Ratio (CR) = Contamination in E1 / Contamination in E2
 a. Worst Case Measured CR = 2.9 E06 ± 30% †
 iii. External Transferred Contamination = 1/CR * Internal DPM or Mass

Note: A 99.999% efficient HEPA filter has a Containment Ratio of 1.0 E05
† Ref: NTA 3003/58, DPTE™ Qualification report for particulate contamination, Rev. A
ALARA Improvements in Contained Transfer

1/CR * Internal Activity or Mass = External Transferred Contamination

Example:

If 1.0E08 DPM in containment, then

\[
\frac{1}{2.9 \times 10^6} \times 1.0 \times 10^8 = 3.44 \times 10^{-7} \times 1.0 \times 10^8
\]

= 34.5 ± 30% DPM outside containment †

† CR for DPTE™ was derived using worst case scenario of positive 0.5” W.C. in box and a 0.15 micron particle size surrogate
ALARA Improvements in Contained Transfer

- **Control the Nature of the Transfer Operation**
 1. Provide an operation that is Simple, Safe, Fast, Efficient, and provides consistent containment results

- **Methods to improve the safety and ALARA of operations**
 1. Administrative Controls
 a) The Shorter, the Better
 2. Engineered Controls
 a) A well engineered transfer device gives consistent containment results
 b) A Transfer Device with consistent containment results allows the use of a Containment Ratio to determine and control ALARA results.

SRNL Gloveboxes That Will Utilize the DPTE™
ALARA Improvements in Contained Transfer

CONCLUSION

– ALARA for Contained Transfer Operations is best controlled with the use of Engineered Controls to provide Simple yet consistent containment during transfer operations.

– The DPTE™ is an engineering controlled device that is Simple, very consistent, safe, efficient, and has been proven to provide a very good Containment Ratio per transfer.

– Utilization of double door transfer technology (DPTE™) in place of Bag operations and Open Hoods with Airlocks for most α, β and γ containing Material transfer, Sample transfer, and Waste transfer/packaging will greatly improve ALARA, improve operational efficiency, and minimize waste.