Chapter 3

Effluent Monitoring

Carl Cook, Pete Fledderman, Donald Padgett, and Monte Steedley

Environmental Services Section

Timothy Jannik

Savannah River National Laboratory

Effluent monitoring at Savannah River Site (SRS) is conducted to demonstrate compliance with applicable standards and regulations. Site effluent monitoring activities are divided into radiological and nonradiological programs. A complete description of sampling and analytical procedures used for effluent monitoring by the Environmental Monitoring and Analysis group of the site’s Environmental Services Section can be found in sections 1101–1111 (SRS EM Program) of the Savannah River Site Environmental Monitoring Section Plans and Procedures, WSRC–3Q1–2, Volume 1. A summary of data results is presented in this chapter; more complete data can be found in tables on the CD included with this report.

Radiological Monitoring

Radiological effluent monitoring results are a major component in determining compliance with applicable dose standards. SRS management philosophy ensures that potential exposures to members of the public and to onsite workers are kept as far below regulatory standards as is reasonably achievable. This philosophy is known as the “as low as reasonably achievable” (ALARA) concept.

SRS airborne and liquid effluents that potentially contain radionuclides are monitored at their points of discharge by a combination of direct measurement and/or sample extraction and analysis. Each operating facility maintains ownership of and is responsible for its radiological effluents.

Unspecified alpha and beta emissions (the measured gross activity minus the identified individual radionuclides) in airborne and liquid releases are large contributors—on a percentage basis—to offsite doses, especially for the airborne pathway from diffuse and fugitive releases (see definitions below). The unspecified alpha and beta emissions are listed separately in the effluent release tables. Prior to 2000, these emissions were included in the plutonium-239 and strontium-89,90 releases. For dose calculations, the unspecified alpha releases were assigned the plutonium-239 dose factor, and the unspecified beta releases were assigned the strontium-90 dose factor (chapter 5, “Potential Radiation Doses”).

Airborne Emissions

Process area stacks that release or have the potential to release radioactive materials are monitored continuously by applicable online monitoring and/or sampling systems [SRS EM Program, 2001].

Depending on the processes involved, discharge stacks also may be monitored with “real-time” instrumentation to determine instantaneous and cumulative atmospheric releases to the environment. Tritium is one of the radionuclides monitored with continuous real-time instrumentation.

The following effluent sampling and monitoring changes were made during 2004:

- At 292–H, the sampling of charcoal canisters was changed from weekly to every two weeks in July.
- At 244–H, vessel vent sampling was taken out of service in April, with radioactive material inventory removed and sampling discontinued in May.
- At 291–S, Zone 1 sampling was changed from weekly to quarterly in October.

Diffuse and Fugitive Sources

Estimates of radionuclide releases from unmonitored diffuse and fugitive sources also are included in the SRS radioactive release totals. A diffuse source is defined as an area source. A fugitive source is defined as an undesignated localized source.

Diffuse and fugitive releases are calculated using the U.S. Environmental Protection Agency’s (EPA’s)
recommended methods [EPA, 1999a]. Because these methods are conservative, they generally lead to overestimates of actual emissions.

Monitoring Results Summary

The total amount of radioactive material released to the environment is quantified by using data obtained from continuously monitored airborne effluent release points and estimates of diffuse and fugitive sources.

Because of greatly reduced operations in H-Canyon, there were no fission product tritium, carbon-14, or krypton-85 releases from the separations areas in 2004. In the past, estimated releases of these unmonitored radionuclides were calculated based on production levels.

Tritium Tritium in elemental and oxide forms accounted for more than 99 percent of the total radioactivity released to the atmosphere from SRS operations. During 2004, about 61,300 Ci of tritium were released from SRS, compared to about 50,000 Ci in 2003.

Because of improvements in facilities, processes, and operations, and because of changes in the site’s missions, the amount of tritium (and other atmospheric radionuclides) released generally has declined during the past 15 years at SRS. Since 1995, the total amount of tritium released has fluctuated but has remained less than 100,000 Ci per year because of changes in the site’s missions and the existence of the Replacement Tritium Facility (figure 3-1).

Comparison of Average Concentrations in Airborne Emissions to DOE Derived Concentration Guides

Average concentrations of radionuclides in airborne emissions are calculated by dividing the yearly release total of each radionuclide from each stack by the yearly stack flow quantities. These average concentrations then can be compared to the DOE derived concentration guides (DCGs) in DOE Order 5400.5, “Radiation Protection of the Public and the Environment,” as a screening method to determine if existing effluent treatment systems are proper and effective. The 2004 atmospheric effluent annual-average concentrations, their comparisons against the DOE DCGs, and the quantities of radionuclides released are provided, by discharge point, on the CD accompanying this report.

DCGs are used as reference concentrations for conducting environmental protection programs at all DOE sites. DCGs are applicable at the point of discharge (prior to dilution or dispersion) under conditions of continuous exposure.

Most of the SRS radiological stacks/facilities release small quantities of radionuclides at concentrations below the DOE DCGs. However, certain radionuclides—tritium (in the oxide form) from the reactor (K-Area, C-Area, and L-Area main stacks) and tritium facilities; plutonium-239 from the 291–F and 221–S stacks; and

![Figure 3-1 Ten-Year History of SRS Annual Atmospheric Tritium Releases](#)
americium-241 from the 244–H vessel vent—were emitted at concentration levels above the DCGs. The offsite dose from all atmospheric releases during 2004, however, remained well below the DOE and EPA annual atmospheric pathway dose standard of 10 mrem (0.1 mSv) (chapter 5).

Liquid Discharges

Each process area liquid effluent discharge point that releases or has potential to release radioactive materials is sampled routinely and analyzed for radioactivity [SRS EM Program, 2001].

Depending on the processes involved, liquid effluents also may be monitored with real-time instrumentation to ensure that instantaneous releases stay within established limits. Because the instruments have limited detection sensitivity, online monitoring systems are not used to quantify SRS liquid radioactive releases at their current low levels.

Monitoring Results Summary

Data from continuously monitored liquid effluent discharge points are used in conjunction with site seepage basin and Solid Waste Disposal Facility migration release estimates to quantify the total radioactive material released to the Savannah River from SRS operations. SRS liquid radioactive releases for 2004 are shown by source on the CD accompanying this report. These data are a major component in the determination of offsite dose consequences from SRS operations.

Direct Discharges of Liquid Effluents

Direct discharges of liquid effluents are quantified at the point of release to the receiving stream, prior to dilution by the stream. The release totals are based on measured concentrations and flow rates.

Tritium accounts for nearly all the radioactivity discharged in SRS liquid effluents. The total amount of tritium released directly from process areas—i.e., reactor, separations, Effluent Treatment Facility (ETF)—to site streams during 2004 was 756 Ci, which was 51 percent less than the 2003 total of 1,553 Ci. This decrease was due to the fact that ETF has been processing wastewater with less tritium in it than in previous years.

![Figure 3-2 Ten-Year History of Direct Releases of Tritium to SRS Streams](image)

Figure 3–2 Ten-Year History of Direct Releases of Tritium to SRS Streams

Operations at D-Area and TNX were discontinued in 2000 and 2001, respectively. Releases from A-Area represent only a small percentage of the total direct releases of tritium to site streams. The reactor area releases include the overflows from PAR Pond and L Lake.
Direct releases of tritium to site streams for the years 1995–2004 are shown in figure 3–2. The migration and transport of radionuclides from site seepage basins and the Solid Waste Disposal Facility are discussed in chapter 4 (“Environmental Surveillance”).

Comparison of Average Concentrations in Liquid Releases to DOE Derived Concentration Guides

In addition to dose standards, DOE Order 5400.5 imposes other control considerations on liquid releases. These considerations are applicable to direct discharges but not to seepage basin and Solid Waste Disposal Facility migration discharges. The DOE order lists DCG values for most radionuclides.

DCGs are applicable at the point of discharge from the effluent conduit to the environment (prior to dilution or dispersion). According to DOE Order 5400.5, exceedance of the DCGs at any discharge point may require an investigation of “best available technology” waste treatment for the liquid effluents. Tritium in liquid effluents is specifically excluded from “best available technology” requirements; however, it is not excluded from other ALARA considerations. DOE DCG compliance is demonstrated when the sum of the fractional DCG values for all radionuclides detectable in the effluent is less than 1.00, based on consecutive 12-month-average concentrations. The 2004 liquid effluent annual-average concentrations, their comparisons against the DOE DCGs, and the quantities of radionuclides released are provided, by discharge point, on the CD accompanying this report.

The data show that the U3R–2A ETF outfall at the Road C discharge point exceeded the DCG guide for 12-month-average tritium concentrations during 2004. However, as noted previously, DOE Order 5400.5 specifically exempts tritium from “best available technology” waste treatment investigation requirements. This is because there is no practical technology available for removing tritium from dilute liquid waste streams. No other discharge points exceeded the DOE DCGs during 2004.

Nonradiological Monitoring

Airborne Emissions

The South Carolina Department of Health and Environmental Control (SCDHEC) regulates both radioactive and nonradioactive criteria and toxic air pollutant emissions—from SRS sources. Each source of air emissions is permitted or exempted by SCDHEC on the new SRS Part 70 Air Quality Permit, with specific limitations and monitoring requirements identified. This section will cover only nonradioactive emissions.

The bases for the limitations and monitoring requirements specified in the Part 70 Air Quality Permit are outlined in various South Carolina and federal air pollution control regulations and standards. Many of the applicable standards are source dependent, i.e., applicable to certain types of industry, processes, or equipment. However, some standards govern all sources for criteria pollutants, toxic air pollutants, and ambient air quality. Air pollution control regulations and standards applicable to SRS sources are discussed briefly in appendix A, “Applicable Guidelines, Standards, and Regulations.” The SCDHEC air standards for toxic air pollutants can be found at http://www.scdhec.net/baq on the Internet.

At the beginning of 2004, the SRS Part 70 Air Quality Permit identified 84 nonexempt radiological and nonradiological air emission units. During the year, SCDHEC issued three revisions to the permit in which 35 of the permitted emission units were voided and a new emission unit was added. Of the 35 voided units, eight had been removed from service and 27 were reclassified as exempt sources in the Insignificant Activities List (attachment B of the permit). Of the remaining 50 units, 45 were in operation in some capacity during 2004 and the remaining five sources either were being maintained in a “cold standby” status or were under construction.

Description of Monitoring Program

Major nonradiological emissions of concern from stacks at SRS facilities include sulfur dioxide, carbon monoxide, oxides of nitrogen, particulate matter smaller than 10 microns, volatile organic compounds (VOCs), and toxic air pollutants. With the issuance of the new Part 70 Air Quality Permit, SRS has several new continuous and periodic monitoring requirements; only the most significant are discussed below.

The primary method of source monitoring at SRS is the annual air emissions inventory. Emissions from SRS sources are determined during this inventory from standard calculations using source operating parameters, such as hours of operation, process throughput, and emission factors provided in the EPA “Compilation of Air Pollution Emission Factors,” AP–42. Many of the processes at SRS, however, are unique sources requiring nonstandard, complex calculations. The hourly and total annual emissions for each source then can be compared against their respective permit limitations.

At the SRS powerhouses, airborne emission specialists under contract to SRS perform stack compliance tests every two years for each boiler. The tests include sampling of the boiler exhaust gases to determine
particulate matter, sulfur dioxide, and visible opacity emissions. The permit also requires a weekly sample and laboratory analysis of coal for sulfur content and, a visible emissions inspection daily to verify compliance with opacity standards.

For the package steam generating boilers in K-Area, fuel oil-fired water heaters in B-Area, and diesel-powered equipment, compliance with sulfur dioxide standards is determined by analysis of the fuel oil purchased from the offsite vendor. Sulfur content of the fuel oil must be below 0.5 percent and must be reported to SCDHEC annually as part of the SRS annual compliance certification report due in April of each year.

Monitoring of SRS diesel-powered equipment consists of tracking fuel oil consumption monthly and calculating a 12-month rolling total for determining permit compliance with a site consumption limit.

SRS has several soil vapor extraction units and two air strippers that are sources of toxic air pollutants and VOCs. These units must be sampled monthly for VOC concentrations, and the total VOC emissions must be calculated for comparison against a 12-month rolling limit. The VOC emissions then are reported to SCDHEC on a quarterly basis.

Several SRS sources have pollutant control devices—such as multiclone dust collectors, baghouse dust collectors, or condensers—whose parameters must be monitored continuously or whenever the system is operated. The operating parameters must be recorded and compared against specific operating ranges.

Compliance by all SRS permitted sources is evaluated during annual compliance inspections by the local SCDHEC district air manager. The inspections consist of a review of each permit condition, i.e., daily monitoring readings, equipment calibrations, control device inspections, etc.

Monitoring Results Summary

In 2004, operating data were compiled and emissions calculated for 2003 operations for all site air emission sources. Because this process, which begins in January, requires up to 6 months to complete, this report will provide a comprehensive examination of total 2003 emissions, with only limited discussion of available 2004 monitoring results for specific sources.

The 2003 total criteria and toxic air pollutant emissions results for all SRS sources, as determined by the air emissions inventory conducted in 2004, are provided in table 3–1 and on the CD accompanying this report. A review of the calculated emissions for each source for calendar year 2003 determined that SRS sources had operated in compliance with permitted emission rates. Actual 2004 emissions will be compiled and reported in depth in the SRS Environmental Report for 2005.

Table 3–1
2003 Criteria Pollutant Air Emissions

<table>
<thead>
<tr>
<th>Pollutant Name</th>
<th>Actual Emissions (Tons/Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur dioxide</td>
<td>5.36E+02</td>
</tr>
<tr>
<td>Total suspended particulates</td>
<td>3.02E+02</td>
</tr>
<tr>
<td>PM{sub}10 (particulate matter 10 microns)</td>
<td>1.18E+02</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>2.29E+03</td>
</tr>
<tr>
<td>Ozone (volatile organic compounds)</td>
<td>9.33E+01</td>
</tr>
<tr>
<td>Gaseous fluorides (as hydrogen fluoride)</td>
<td>1.14E–01</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>2.66E+02</td>
</tr>
<tr>
<td>Lead</td>
<td>5.58E-01</td>
</tr>
</tbody>
</table>
As reported to SCDHEC during 2004, the calculated annual VOC emissions were well below the permit limit for each unit.

In 2004, the annual air compliance inspection was conducted in two phases—the first phase by both SCDHEC and EPA as part of a multimedia inspection and the second by the SCDHEC District Air manager. During these inspections, all SRS permitted sources were found to be in compliance with their respective permit conditions and limits, and all required reports were determined to have been submitted to SCDHEC within specified time limits.

Ambient Air Quality

Under existing regulations, SRS is not required to conduct onsite monitoring for ambient air quality; however, the site is required to show compliance with various air quality standards. To accomplish this, air dispersion modeling was conducted during 2004 for new emission sources or modified sources as part of the sources’ construction permitting process. The modeling analysis showed that SRS air emission sources were in compliance with applicable regulations. Additional information about ambient-air-quality regulations at the site can be found in appendix A of this report.

Liquid Discharges

Description of Monitoring Program

SRS monitors nonradioactive liquid discharges to surface waters through the National Pollutant Discharge Elimination System (NPDES), as mandated by the Clean Water Act. As required by EPA and SCDHEC, SRS has NPDES permits in place for discharges to the waters of the United States and South Carolina. These permits establish the specific sites to be monitored, parameters to be tested, and monitoring frequency—as well as analytical, reporting, and collection methods. Detailed requirements for each permitted discharge point can be found in the individual permits, which are available to the public through SCDHEC’s Freedom of Information office at 803–734–5376.

In 2004, SRS discharged water into site streams and the Savannah River under two NPDES permits: one for industrial wastewater (SC0000175) and one for stormwater runoff—SCR000000 (industrial discharge). A third permit, SCR100000, does not require sampling unless requested by SCDHEC to address specific discharge issues at a given construction site; SCDHEC did not request such sampling in 2004. The public comment period for draft Permit SCR100000 expired in February 2004, and the submitted comments are under resolution. Upon completion of this process, the new permit will be formally implemented; this is expected in early 2005. Permit ND0072125 is a “no discharge” water pollution control land application permit that regulates sludge application and related sampling at onsite sanitary wastewater treatment facilities.

NPDES samples are collected in the field according to 40 CFR 136, the federal document that lists specific sample collection, preservation, and analytical methods acceptable for the type of pollutant to be analyzed. Chain-of-custody procedures are followed after collection and during transport to the analytical laboratory. The samples then are accepted by the laboratory and analyzed according to procedures listed in 40 CFR 136 for the parameters required by the permit.

Monitoring Results Summary

SRS reports industrial wastewater analytical results to SCDHEC through a monthly discharge monitoring report (EPA Form 3320–1). Results from only seven of the 3,673 sample analyses performed during 2004 exceeded permit limits—a 99.8-percent compliance rate, which is higher than the DOE-mandated 98-percent rate. A list of the 2004 NPDES exceedances appears in table 3–4.

In anticipation of a new stormwater permit in early 2005, 16 additional outfalls were added to the 2004 routine stormwater sampling program on a one-time basis in October to determine the condition of normally unsampled stormwater outfalls. Because of various
factors—including rain-event timing, severe weather conditions, increased sampling load, and SRS’s large area—only six of the 12 routine outfalls and 12 of the 16 additional outfalls could be sampled in 2004. The remaining samples from the additional outfalls will be collected in early 2005. Complete 2004 analysis results from all the stormwater outfalls can be found in the NPDES stormwater monitoring data table on the CD accompanying this report. In 2004, as in previous years, no permit limits were mandated for SRS stormwater outfalls.

During the fourth quarter of 2004, dewatered sludge was sampled and analyzed for pollutants of concern, and approximately 51 cubic yards of sludge were applied to the land. No sludge was applied during the first, second, or third quarters. The analytical results indicated that pollutant concentrations were within regulatory limits.
Table 3–4
2004 Exceedances of SCDHEC-Issued NPDES Permit Liquid Discharge Limits at SRS

<table>
<thead>
<tr>
<th>Facility/Division/Unit</th>
<th>Outfall</th>
<th>Date</th>
<th>Analysis</th>
<th>Possible Cause(s)</th>
<th>Corrective Action(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effluent Treatment</td>
<td>H–16</td>
<td>January 20</td>
<td>TSS</td>
<td>Loss of electrical power at contract laboratory due to ice storm caused a missed hold time; sample declared invalid</td>
<td>Power restored and analysis performed (results received too late to perform additional sampling)</td>
</tr>
<tr>
<td>Effluent Treatment</td>
<td>H–16</td>
<td>February 3</td>
<td>BOD</td>
<td>Contract laboratory QA/QC errors due to demo of new automated equipment; sample declared invalid</td>
<td>Automated equipment removed from service</td>
</tr>
<tr>
<td>Effluent Treatment</td>
<td>H–16</td>
<td>February 9</td>
<td>BOD</td>
<td>Contract laboratory QA/QC errors due to demo of new automated equipment; sample declared invalid</td>
<td>Automated equipment removed from service</td>
</tr>
<tr>
<td>Site Utilities Division</td>
<td>G–10</td>
<td>April 16</td>
<td>pH</td>
<td>Samples required twice a month, but obtained twice on same day and taken too closely for accurate representation of monthly discharge; sample declared invalid</td>
<td>SUD committed to ensuring that samples are taken in separate weeks; SUD also sends data review sheet to ESS early in each month for review</td>
</tr>
<tr>
<td>Site Utilities Division</td>
<td>G–10</td>
<td>April 16</td>
<td>DO</td>
<td>Samples required twice a month, but obtained twice on same day and taken too closely for accurate representation of monthly discharge; sample declared invalid</td>
<td>SUD committed to ensuring that samples are taken in separate weeks; SUD also sends data review sheet to ESS early in each month for review</td>
</tr>
<tr>
<td>Closure Business Unit</td>
<td>F–01</td>
<td>July 14</td>
<td>TSS</td>
<td>Runoff from D&D activities; the changing footprint of the area</td>
<td>Best management practices for D&D activities strengthened and maintained for longer duration</td>
</tr>
<tr>
<td>Closure Business Unit</td>
<td>F–01</td>
<td>July 14</td>
<td>TSS</td>
<td>Runoff from D&D activities; the changing footprint of the area</td>
<td>Best management practices for D&D activities strengthened and maintained for longer duration</td>
</tr>
</tbody>
</table>

Key: TSS – Total Suspended Solids; BOD – Biological Oxygen Demand; DO – Dissolved Oxygen

The DOE-mandated NPDES compliance rate is 98 percent; SRS's compliance rate for 2004 was 99.8 percent.