Department of Energy (DOE) Order 458.1, *Radiation Protection of the Public and the Environment*, establishes dose limits for the public and onsite plants and animals. These dose limits are established to protect the public and environment from the potential effects of radiation released during DOE radiological operations. To ensure that radiation exposure does not exceed the DOE public dose limit of 100 mrem/year (yr), the Savannah River Site (SRS) calculates the potential dose to the public from radioactive releases in air and water through all reasonable exposure pathways (direct, ingesting, absorbing, inhaling). SRS also considers and quantifies exposure pathways that are nontypical and not included in the standard dose calculations to the representative person. These apply to conservative and unlikely scenarios, such as a member of the public eating fish caught only from the mouths of SRS streams, or to special scenarios, such as hunters who participate in onsite hunts. In addition, DOE Order 458.1 establishes authorized surface contamination limits, which allow SRS to release personal and real property unconditionally. SRS performs radiological surveys on all equipment considered for release and follows applicable procedures.

2017 Highlights

Dose to the Offsite Representative Person—The dose to the offsite representative person was 0.22 mrem from SRS liquid releases and 0.027 mrem from SRS air releases. To comply with the DOE all-pathway dose limit of 100 mrem/yr, SRS conservatively adds these two doses for a total representative person dose of 0.25 mrem, which is 0.25% of the 100 mrem/yr DOE dose limit.
6.1 INTRODUCTION

Routine SRS operations release controlled amounts of radioactive materials to the environment through air and water. These releases could expose people offsite to radiation. To confirm that this exposure is below public dose limits, SRS calculates annual dose estimates using environmental monitoring and surveillance data, combined with relevant Site-specific data (such as weather conditions, population characteristics, and river flow). SRS also confirms that the potential doses to plants and animals (biota) living onsite remain below the DOE biota dose limits. This chapter explains radiation doses, describes how SRS calculates doses, and presents the estimated doses from SRS activities for 2017.

Radiological Impact of 2017 Operations at the Savannah River Site (Jannik, Bell, and Dixon 2018) details SRS dose calculation methods and results.

To calculate the potential doses to the public, SRS used the data from the monitoring programs described in Chapter 5, *Radiological Environmental Monitoring Program*.
6.2 WHAT IS RADIATION DOSE?

Radiation dose to a person is the amount of energy absorbed by the human body from a radiation source located either inside or outside of the body. SRS typically reports dose in millirem (mrem), which is one-thousandth of a rem. A rem is a standard unit used to measure the amount of radiation deposited in human tissue.

Humans, plants, and animals potentially receive radiation doses from natural and man-made sources. The average annual background dose for all people living in the United States is 625 mrem (NCRP 2009). This includes an average background dose of 311 mrem from naturally occurring radionuclides found in our bodies, in the earth, and from cosmic radiation, such as from the sun. Man-made sources and their doses include medical procedures (300 mrem), consumer products (13 mrem), and industrial and occupational exposures from facilities such as SRS (less than 1 mrem).

DOE has established dose limits to the public so that DOE operations will not contribute significantly to this average annual exposure. DOE Order 458.1 (DOE 2013) establishes 100 mrem/yr (1 mSv/yr) as the annual dose limit to a member of the public. Exposure to radiation primarily occurs through the following pathways, which Figure 6-1 illustrates:

- Inhaling air
- Ingesting water and food
- Absorbing through skin
- Direct (external) exposure to radionuclides in soil, air, and water

6.3 CALCULATING DOSE

To comply with DOE Order 458.1, dose can be calculated to the maximally exposed individual (MEI) or to a representative person. Since 2012, SRS has used the representative person concept to determine if the Site is complying with the DOE public dose limit. SRS calculates the representative person dose using site-specific reference person parameters. The SRS representative person falls at the 95th percentile of national and regional data. The calculations incorporate age, gender, food and water consumption, and breathing rate. At SRS, the representative person equates to the 95th percentile of applicable national human-use radiation exposure data.

Chapter 6—Key Terms

Exposure pathway is the way that releases of radionuclides into the water and air could impact a person.

Reference person is a hypothetical person with average physical and physiological characteristics—including factors such as age and gender—used internationally to standardize radiation dose calculations.

Representative person is a hypothetical individual receiving a dose that is representative of highly exposed individuals in the population. The calculations incorporate age, gender, food and water consumption, and breathing rate. At SRS, the representative person equates to the 95th percentile of applicable national human-use radiation exposure data.
in general, more sensitive to radioactivity than older people. SRS also developed human usage parameters at the 50th percentile for calculating dose to a “typical” person when determining population doses.

Figure 6-1 Exposure Pathways to Humans from Air and Liquid Effluents

The SRS report Site-Specific Reference Person Parameters and Derived Concentration Standards for SRS (Stone and Jannik 2013) documents SRS-specific reference and typical person usage parameters. The SRS report Land and Water Use Characteristics and Human Health Input Parameters for Use in Environmental Dosimetry and Risk Assessments at the Savannah River Site (Jannik and Stagich 2017) documents all other applicable land- and water-use parameters in the dose calculations. These parameters include local characteristics of food production, river recreational activities, and other human usage parameters required in SRS models to calculate radiation dose exposure.

In 2017, SRS made two conservative changes in the locations of the representative person:

1) For the liquid pathway, the representative person was moved from river mile (RM) 118.8 (near US Hwy 301 bridge) to RM 141.5, which is slightly downriver from the Steel Creek mouth. The historical location at RM 118.8 is downriver of all SRS streams, but SRS radiological releases into Lower Three Runs have been small for many years, and moving the representative person to near Steel Creek gives a better indication of the potential dose from fish.

2) For the air pathway, in addition to the offsite representative person living near the Site boundary, SRS also calculated potential dose for an adult worker at the Three Rivers Landfill located near B Area. Three Rivers Landfill is located on SRS, but it is accessed directly from public South Carolina Hwy 125 outside of the Site’s security perimeter in Aiken County. The workers at Three Rivers Landfill are not Site employees and are now considered members of the public to comply with DOE Order 458.1 and with National
Emissions Standards for Hazardous Pollutants Compliance (NESHAP) regulations (EPA 2002). Figure 6-2 shows these new locations.

Figure 6-2 Locations of Representative Persons (for DOE Compliance) and MEIs (for NESHAP Compliance) for the Air and Liquid Pathways
To determine if the Site is complying with DOE public dose requirements, SRS calculates the potential offsite doses from Site effluent releases of radioactive materials (air and liquid) for the following scenarios:

- Representative person living near the SRS boundary
- Adult person working at the Three Rivers Landfill located on SRS (near B Area)
- Population living within a 50-mile (80-kilometer [km]) radius of SRS

For all routine environmental dose calculations, SRS uses environmental transport and dose models based on codes the Nuclear Regulatory Commission (NRC) developed (NRC 1977). The NRC-based transport models use DOE-accepted methods, consider all significant exposure pathways, and permit detailed analysis of the effects of routine operations. The SRS report *Environmental Dose Assessment Manual* (Jannik 2017) describes the specific models SRS uses.

At SRS, the dose to a representative person is based on the following:

1) SRS-specific reference person usage parameters at the 95th percentile of appropriate national or regional data (Stone and Jannik 2013).

6.3.1 Weather Database

Complete and accurate weather (meteorological) data are important to determine offsite contamination levels. SRS calculated potential offsite doses from radioactive releases to the air with quality-assured weather data from 2007 to 2011 (Viner 2013).

Figure 6-3 presents the H-Area wind rose plot for 2007-2011 and shows the direction and frequency the wind blows. As shown, the wind blows the most towards the East-Northeast sector (about 9% of the time), but there is no strongly prevalent wind direction.

6.3.2 Population Database and Distribution

SRS calculates the collective (population) doses from air releases for the population within a 50-mile radius of the Site. Based on the U.S. Census Bureau’s 2010 data, the population within a 50-
mile radius of the center of SRS is 781,060 people. This translates to about 104 people per square mile outside the SRS boundary, with the largest concentration in the Augusta metropolitan area.

Table 6-1 presents the number of people currently served by the three drinking water supply plants that are downriver of SRS.

The total population dose from routine SRS liquid releases is the sum of the following five contributing categories:

1) Consumers of water from Beaufort-Jasper Water and Sewer Authority (BJWSA)
2) Consumers of water from City of Savannah Industrial and Domestic (I&D)
3) Consumers of fish and invertebrates of Savannah River origin
4) Participants of recreational activities on the Savannah River
5) Gardeners and farmers irrigating foodstuffs with river water near RM 141.5

<table>
<thead>
<tr>
<th>Water Supply Plant</th>
<th>Nearest City</th>
<th>Population Served</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Savannah Industrial and Domestic Water Supply Plant (City of Savannah I&D)</td>
<td>Port Wentworth, Georgia</td>
<td>35,000 people</td>
</tr>
<tr>
<td>Beaufort-Jasper Water and Sewer Authority’s (BJWSA) Chelsea Water Treatment Plant</td>
<td>Beaufort, South Carolina</td>
<td>83,700 people</td>
</tr>
<tr>
<td>BJWSA Purrysburg Water Treatment Plant</td>
<td>Beaufort, South Carolina</td>
<td>64,800 people</td>
</tr>
</tbody>
</table>

6.3.3 River Flow Rate Data

The annual rate of flow in the Savannah River, which varies greatly from year to year, is an important criterion for determining down-river concentrations of the contaminants SRS releases. The U.S. Geological Survey (USGS) measures Savannah River flow rates down river of SRS at its RM 118.8 gauging station, located near the U.S. Hwy 301 Bridge.

Figure 6-4 provides the river flow rates measured by USGS at this location from 1954 to 2017. It also shows that the average river flow rate for these years is about 10,000 cubic feet per second (cfs). However, in the last 10 years, there has been a downward trend in these data, with an average measured flow rate of just 7,530 cfs.

For 2017, SRS used a calculated “effective” Savannah River flow rate of 5,460 cfs in the dose calculations. The 2017 effective flow rate is about 15% less than the 2016 effective flow rate of 6,426 cfs. This effective flow rate (based on actual measured tritium concentrations in the river) is more conservative than the 2017 USGS measured flow rate of 5,698 cfs (based on daily flow rates). By using a conservative method, the calculated effective flow rate assumes radioactive material is less diluted and, therefore, increases the estimated potential dose.
6.4 OFFSITE REPRESENTATIVE PERSON DOSE CALCULATION RESULTS

To determine the Site is complying with DOE public dose requirements, SRS calculates the potential offsite doses from Site effluent releases of radioactive materials in air and liquid pathways for a representative person living near the SRS boundary. SRS calculates the pathways individually and then adds the two results to obtain the representative person dose.

6.4.1 Liquid Pathway

6.4.1.1 Liquid Release Source Terms

Table 6-2 shows, by radionuclide, the amount of radioactivity in liquid form that SRS released in 2017. SRS uses these release amounts in the dose calculations. Discussions of the sources of these data are in Chapter 5, Radiological Environmental Monitoring Program.

Tritium accounts for more than 99% of the total amount of radioactivity released from the Site to the Savannah River. In 2017, SRS released a total of 563 curies of tritium to the river, a 23% decrease from the 2016 amount of 731 curies. For compliance dose calculations, SRS used the stream transport measurement (563 curies), which was higher than the direct release total (494 curies). Refer to Chapter 5, Radiological Environmental Monitoring Program, Section 5.4.5 for details concerning these measurements.
Table 6-2 2017 Liquid Release Source Term and 12-Month Average Downriver Radionuclide Concentrations Compared to the EPA’s Drinking Water Maximum Contaminant Levels (MCL)

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Curies Released</th>
<th>12-Month Average Concentration (pCi/L)</th>
<th>EPA MCL<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Below SRS<sup>a</sup></td>
<td>at BJWSA Purrysburg Plant<sup>b</sup></td>
</tr>
<tr>
<td>H-3<sup>d</sup></td>
<td>5.63E+02</td>
<td>6.04E+02</td>
<td>5.23E+02</td>
</tr>
<tr>
<td>C-14</td>
<td>1.09E-02</td>
<td>2.23E-03</td>
<td>1.93E-03</td>
</tr>
<tr>
<td>Sr-90</td>
<td>2.13E-02</td>
<td>4.37E-03</td>
<td>3.78E-03</td>
</tr>
<tr>
<td>Tc-99</td>
<td>1.51E-02</td>
<td>3.09E-03</td>
<td>2.68E-03</td>
</tr>
<tr>
<td>I-129</td>
<td>2.18E-02</td>
<td>4.47E-03</td>
<td>3.87E-03</td>
</tr>
<tr>
<td>Cs-137</td>
<td>5.78E-03</td>
<td>2.95E-02</td>
<td>2.56E-02</td>
</tr>
<tr>
<td>Ra-226</td>
<td>7.27E-04</td>
<td>1.49E-04</td>
<td>1.29E-04</td>
</tr>
<tr>
<td>U-234</td>
<td>3.48E-02</td>
<td>7.13E-03</td>
<td>6.17E-03</td>
</tr>
<tr>
<td>U-235</td>
<td>1.23E-03</td>
<td>2.52E-04</td>
<td>2.18E-04</td>
</tr>
<tr>
<td>U-238</td>
<td>3.61E-02</td>
<td>7.40E-03</td>
<td>6.41E-03</td>
</tr>
<tr>
<td>Np-237</td>
<td>5.57E-05</td>
<td>1.14E-05</td>
<td>9.88E-06</td>
</tr>
<tr>
<td>Pu-238</td>
<td>2.33E-04</td>
<td>4.77E-05</td>
<td>4.13E-05</td>
</tr>
<tr>
<td>Pu-239</td>
<td>2.00E-05</td>
<td>4.10E-06</td>
<td>3.55E-06</td>
</tr>
<tr>
<td>Am-241</td>
<td>5.62E-03</td>
<td>1.15E-03</td>
<td>9.97E-04</td>
</tr>
<tr>
<td>Cm-244</td>
<td>1.49E-04</td>
<td>3.05E-05</td>
<td>2.64E-05</td>
</tr>
<tr>
<td>Alpha</td>
<td>2.45E-03</td>
<td>5.02E-04</td>
<td>4.35E-04</td>
</tr>
<tr>
<td>Beta</td>
<td>5.50E-02</td>
<td>1.13E-02</td>
<td>9.76E-03</td>
</tr>
</tbody>
</table>

Notes:
^a Near Savannah River Mile 141.5, downriver of SRS near the Steel Creek mouth
^b Beaufort-Jasper Water and Sewer Authority, drinking water at the Purrysburg Water Treatment Plant
^c MCLs for uranium based on radioisotope specific activity X 30 µg/L X isotopic abundance
^d Actual measurements of the Savannah River water at the various locations are the basis for the tritium concentrations and source term. They include contributions from VEGP and the Barnwell Low-Level Disposal Facility.

SRS uses the effective or measured river flow rate to calculate all other radionuclide concentrations.
During 2017, in addition to the 563 curies SRS released, the Georgia Power Company’s Vogtle Electric Generating Plant (VEGP) released 2,337 curies of tritium to the Savannah River, and 45 curies migrated from the Barnwell Low-Level Disposal Facility (BLLDF) for an overall total of 2,945 curies of tritium (SRS plus VEGP plus BLLDF). This is slightly more than the total of 2,893 curies measured in the Savannah River, as Chapter 5 reports.

6.4.1.2 Radionuclide Concentrations in Savannah River Water, Drinking Water, and Fish

SRS measures concentrations of tritium in the river water and cesium-137 in fish at several locations along the Savannah River. SRS uses these direct measurements to make dose determinations. The amounts of all other radionuclides SRS released are so small that their concentration in the Savannah River usually cannot be detected using conventional analytical techniques. SRS calculates the concentrations in the river based on the annual release amounts and river flow rates and then compares them to the Safe Drinking Water Act, 40 CFR 141 (EPA 2000) maximum contaminant level (MCL) for each radionuclide.

Radionuclide Concentrations in River Water and Treated Drinking Water—Table 6-2 shows the measured concentrations of tritium in the Savannah River near RM 141.5 and at the BJWSA Purrysburg Water Treatment Facility, which is representative of the BJWSA Chelsea and the City of Savannah I&D water treatment plants. These downriver tritium concentrations include tritium releases from SRS, the VEGP, and BLLDF. In 2017, the 12-month average tritium concentration measured in Savannah River water near RM 141.5 was 604 picocuries per liter (pCi/L). This concentration is well below EPA’s MCL for tritium of 20 pCi/ml. Table 6-2 also provides the calculated concentrations for the other released radionuclides and a comparison of these concentrations to EPA’s MCLs. As shown, all radionuclide concentrations are well below the MCLs.

Radionuclide Concentrations in Fish—Consuming fish is an important dose pathway for the representative person. Fish exhibit a high degree of bioaccumulation for certain elements. For cesium (including radioactive isotopes of cesium, such as cesium-137), the bioaccumulation factor for Savannah River fish is estimated at 3,000, meaning that the cesium concentration in fish flesh is about 3,000 times the concentration of cesium found in the water in which the fish live (Carlton et al., 1994).

Because of this high bioaccumulation factor, SRS can detect cesium-137 more easily in fish flesh than in river water. Therefore, when conservative to do so, SRS bases the fish pathway dose from cesium-137 directly on analyzing the fish collected from the location of the hypothetical representative person, which is near the mouth of Steel Creek, at RM 141.5. In 2017, SRS used the Steel Creek fish concentrations to determine the Site’s overall cesium-137 release value of 0.144 Ci, which was three times more than the 2016 value of 0.0479 Ci. This relatively large increase is attributed to SRS moving the location of the representative
person from RM 118.8 to near Steel Creek (RM 141.5), which has legacy contamination in its sediment (see Chapter 5).

6.4.1.3 Dose to the Representative Person

The 2017 potential dose to the representative person from all liquid pathways (including irrigation) was estimated at 0.22 mrem (0.0022 mSv), which is 47% more than the comparable dose in 2016. Again, this increase is attributed to SRS moving the location of the representative person from RM 118.8 to near Steel Creek (RM 141.5), which increased the dose from fish consumption. Table 6-3 shows that the total liquid pathway dose is 0.22% of the DOE public dose limit of 100 mrem/yr (1 mSv/yr).

Table 6-3 Potential Dose to the Representative Person from SRS Liquid Releases in 2017

<table>
<thead>
<tr>
<th>Near Site Boundary (All Liquid Pathways)</th>
<th>Committed Dose (mrem)</th>
<th>Applicable Limit (mrem)</th>
<th>Percent of Limit (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Liquid Pathways Except Irrigation</td>
<td>0.13</td>
<td>100</td>
<td>0.13%</td>
</tr>
<tr>
<td>Irrigation Pathways</td>
<td>0.089</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Liquid Pathways</td>
<td>0.22</td>
<td>100</td>
<td>0.22%</td>
</tr>
</tbody>
</table>

Note:
*DOE dose limit: 100 mrem/yr (DOE Order 458.1)

About 41% of the 2017 total dose to the representative person is from consuming meat, milk, and vegetables that have been raised using Savannah River water from RM 141.5. The fish consumption pathway accounted for 51%, and the drinking water pathway accounted for 7%. As Figure 6-5 shows, cesium-137 (54%) and technetium (11%) contributed the most to the liquid pathway dose.

Figure 6-5 Radionuclide Contributions to the 2017 SRS Total Liquid Pathway Dose of 0.22 mrem (0.0022 mSv)
6.4.1.4 Drinking Water Pathway Dose

People living downriver of SRS may receive some dose by drinking water that contains radioactive releases from the Site. Tritium in downriver drinking water represented the highest percentage of the dose (about 82%) received by customers of the three downriver water treatment plants.

In 2017, SRS-only releases were responsible for a maximum potential drinking water dose of 0.013 mrem (0.00013 mSv). This dose is about 8% more than the 2016 dose of 0.012 mrem. SRS attributes this slight increase to the 15% decrease in the Savannah River flow rate during 2017, which caused less dilution to occur. There is not a separate drinking water dose limit, but the EPA MCLs, as defined in 40 CFR 141 (EPA 2000), are based on a potential dose of about 4 mrem/yr for beta and gamma emitters.

6.4.1.5 Collective (Population) Dose

SRS calculates the collective drinking water consumption dose for the separate population groups that are customers of the BJWSA and City of Savannah I&D water treatment plants. Calculations of collective doses from agricultural irrigation assume that major food types (vegetables, milk, and meat) grow on 1,000-acre parcels of land in the SRS area, with the population within 50 miles of SRS consuming all the food produced on these 1,000-acre parcels.

In 2017, the collective dose from all liquid pathways was 3.4 person-rem (0.034 person-Sv). This dose is slightly less than the 2016 dose of 3.5 person-rem. SRS calculates the collective dose in person-rem as the average dose per typical person, multiplied by the number of people exposed. DOE Order 458.1 requires that SRS calculate and report a collective dose, but there is not a separate collective dose limit for comparison.

6.4.2 Air Pathway

6.4.2.1 Air Release Source Terms

Chapter 5, Radiological Environmental Monitoring Program, documents the 2017 radioactive air release quantities used as the source term in SRS dose calculations. Tritium accounts for a majority of the dose from SRS air releases. As discussed in Chapter 5, SRS tritium releases decreased about 30% from 2016 to 2017, which decreased the 2017 SRS air pathway doses.

6.4.2.2 Air Concentrations

SRS uses calculated radionuclide concentrations instead of measured concentrations for dose determinations because conventional analytical methods do not detect most of the radionuclides SRS released in the air samples collected at the Site perimeter and offsite locations. However, SRS can routinely measure tritium concentrations at locations along the Site perimeter and compare these results with the calculated concentrations to confirm the dose models. In 2017, this comparison showed that the dose models used at SRS were about 2 to 4 times more conservative than the actual measured tritium concentrations.
6.4.2.3 Dose to the Representative Person

The 2017 estimated dose from air releases to the representative person was 0.027 mrem (0.00027 mSv), 0.27% of the EPA air pathway limit of 10 mrem per year. DOE Order 458.1 requires that all DOE sites comply with EPA’s NESHAP regulations. Table 6-4 compares the representative person dose with the EPA dose limit. The 2017 dose was about 29% less than the 2016 dose of 0.038 mrem (0.00038 mSv). SRS attributes this decrease to the 30% decrease in tritium releases during 2017 (See Chapter 5, Radiological Environmental Monitoring Program). The air pathway representative person is located at the SRS boundary in the north compass point direction, near New Ellenton, South Carolina (see Figure 6-2).

Table 6-4 Potential Doses to the Representative Person and to the MEI from SRS Air Releases in 2017 and Comparison to the Applicable Dose Limit

<table>
<thead>
<tr>
<th></th>
<th>MAXDOSE-SR (Using DOE Dose Coefficients)</th>
<th>CAP88-PC (EPA NESHAP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculated dose (mrem)</td>
<td>0.027</td>
<td>0.029</td>
</tr>
<tr>
<td>Applicable Limit (mrem)</td>
<td>10<sup>a</sup></td>
<td>10<sup>b</sup></td>
</tr>
<tr>
<td>Percent of Limit (%)</td>
<td>0.27</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Notes:

^a DOE: DOE Order 458.1
^b EPA: (NESHAP) 40 CFR 61, Subpart H

As Figure 6-6 shows, tritium releases were 88% of the dose to the representative person. Iodine-129 was about 5%, unidentified alpha was 2%, and plutonium-239 was 1%. No other individual radionuclide was more than 1% of the representative person dose.

The major ways a representative person received radiation dose from air releases were inhalation (41%), consuming vegetables (35%), and consuming cow milk (23%).

In 2017, SRS began to calculate the potential dose for an adult worker at the Three Rivers Landfill near B Area. As shown in Figure 6-2, Three Rivers Landfill is located on SRS, but it is accessed directly from public Hwy 125 outside of the Site’s security perimeter. The workers at Three Rivers Landfill are not Site employees and are now considered members of the public to comply with DOE Order 458.1.
For this assessment, SRS assumed that an adult person worked at Three Rivers Landfill for 2000 hours during the year (8 hours/day, 5 days/week, 50 weeks/year). SRS also assumed that this worker was only exposed from the inhalation and external-exposure pathways. No locally grown food consumption was considered at this industrial location.

For 2017, SRS calculated a potential dose to a Three Rivers Landfill worker of 0.0064 mrem (0.000064 mSv). This dose is less than the representative person dose of 0.027 mrem that was reported for DOE Order 458.1 compliance.

6.4.2.4 Collective (Population) Dose

SRS calculates the air-pathway collective dose for all 781,060 members of the population living within 50 miles of the center of the Site. In 2017, SRS estimated the airborne-pathway collective dose to be 0.97 person-rem (0.0097 person-Sv). DOE Order 458.1 requires that SRS calculate and report a collective dose, but there is not a separate collective dose limit for comparison.

6.4.2.5 National Emission Standards for Hazardous Air Pollutants (NESHAP) Compliance

To demonstrate the Site is complying with NESHAP regulations (EPA 2002), SRS calculated maximally exposed individual (MEI) and collective doses using the following:

1) The CAP88 PC version 4.0.1.17 computer code, which EPA requires
2) The 2017 airborne-release source term
3) Site-specific input parameters

EPA requires using the MEI concept and not the reference person concept, and it specifies most of the input parameters in the CAP88 PC program. The EPA requires specific approval for any changes to these parameters.

For 2017, SRS calculated doses to two potential MEIs to demonstrate it complied with EPA’s 10 mrem/yr (0.1 mSv/yr) public dose limit for air emissions from DOE sites. One potential MEI was at the usual offsite location, near the site boundary in the north compass point direction (see Figure 6-2). The second potential MEI was a worker at the Three Rivers Landfill. This location also is shown in Figure 6-2 and is described in the “Dose to the Representative Person” section of this chapter. EPA requires that all exposure pathways (including food consumption) be considered for the potential MEI, even for an industrial worker.

For 2017, SRS requested and received approval from EPA to change the location of all site releases from the Center of Site to H Area (see Figure 6-2). This change was requested because a large majority of SRS’s radiological air releases occur from the Tritium Facilities in H-Area (Minter et al. 2018).

SRS estimated the MEI dose at the site boundary to be 0.025 mrem (0.00025 mSv). SRS estimated the MEI dose for the Three Rivers Landfill worker to be 0.029 mrem (0.00029 mSv). For 2017, SRS reported the higher Three Rivers Landfill worker dose of 0.029 mrem for NESHAP compliance. This dose is 0.29% of the 10-mrem/yr EPA limit, as Table 6-4 shows.

Tritium oxide releases accounted for 88% of the MEI dose, elemental tritium accounted for 7.5%, and cesium-137 accounted for 1.3%. Even though SRS tritium air releases were 30% less in 2017, the NESHAP compliance dose (MEI dose) was about 20% more than the 2016 dose of 0.024 mrem (0.00024 mSv). SRS attributes most of this increase to moving the compliance dose MEI location to Three Rivers Landfill,
which, as shown in Figure 6-2, is much closer to the current H-Area release location than the 2016 site-boundary MEI was to the Center of Site release location.

6.4.3 All-Pathway Doses

6.4.3.1 All-Pathway Representative Person Dose

As stated in DOE Order 458.1, the all-pathway dose limit to a member of the public is 100 mrem/yr. SRS ensures a conservative estimate by combining the representative person airborne all-pathway and liquid all-pathway dose estimates, even though the two estimated doses are for hypothetical individuals living in different geographic locations (see Figure 6-2).

For 2017, the potential representative person all-pathway dose was 0.25 mrem (0.0025 mSv), calculated as 0.22 mrem from liquid pathways plus 0.027 mrem from air pathways. As Table 6-5a shows, the all-pathway representative person dose is 0.25% of the 100 mrem/yr (1 mSv/yr) DOE dose limit. The all-pathway total dose is about 30% more than the 2016 total dose of 0.19 mrem (0.0019 mSv). This increase is attributed to SRS moving the location of the liquid pathway representative person from RM 118.8 to RM 141.5 near Steel Creek, which increased the potential dose from fish consumption.

Figure 6-7 shows a 10-year history of SRS’s all-pathway (airborne pathways plus liquid pathways) doses to the representative person.

6.4.3.2 All-Pathway Collective (Population) Dose

DOE Order 458.1 requires that SRS calculate and report a collective dose, but there is not a separate collective dose limit for comparison. For 2017, the total potential collective all-pathway dose was 4.4 person-rem (0.044 person-Sv), calculated as 3.4 person-rem from liquid pathways plus 0.97 person-rem from air pathways. To compare, the annual collective dose from natural sources of radiation that the population within the 50-mile radius surrounding SRS receives is about 243,000 person-rem. As Table 6-5b shows, the SRS all-pathway collective dose of 4.4 person-rem is less than 0.01% of the annual collective background dose.

Table 6-5a Potential Dose to the Representative Person from all Standard Pathways in 2017

<table>
<thead>
<tr>
<th>Pathways</th>
<th>Committed Dose (mrem)</th>
<th>Applicable Limit (mrem)</th>
<th>Percent of Limit (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near Site Boundary (All Pathways)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Liquid Pathways</td>
<td>0.22</td>
<td>100<sup>a</sup></td>
<td>0.22%</td>
</tr>
<tr>
<td>Total Air Pathways</td>
<td>0.027</td>
<td>10<sup>b</sup></td>
<td>0.27%</td>
</tr>
<tr>
<td>Total All Pathways</td>
<td>0.25</td>
<td>100<sup>a</sup></td>
<td>0.25%</td>
</tr>
</tbody>
</table>

Notes:

^a DOE: DOE Order 458.1
^b EPA: (NESHAP) 40 CFR 61, Subpart H
Table 6-5b Potential Collective Dose to the 50-Mile Population Surrounding SRS, Including the People Served by the Downriver Drinking Water Plants

(Based on Dose to a Typical Person from all Standard Pathways in 2017)

<table>
<thead>
<tr>
<th>Pathways</th>
<th>Collective Dose (person-rem)</th>
<th>Natural Background Dose (person-rem)</th>
<th>Percent of Natural Background (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-mile Population Dose (All Pathways)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Liquid Pathways</td>
<td>3.4</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Total Air Pathways</td>
<td>0.97</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Total All Pathways</td>
<td>4.4</td>
<td>243,000<sup>a</sup></td>
<td>< 0.01%</td>
</tr>
</tbody>
</table>

Note:

^a Calculated as 781,060 people (surrounding SRS population) times 311 mrem (0.311 rem) per person per year, which is the average annual natural background dose for people living in the United States (NCRP 2009).

Figure 6-7 10-Year History of SRS Maximum Potential All-Pathway Doses

Notes:
1. Beginning in 2011, the irrigation pathway dose is included in the liquid pathway dose. Previous years do not include the irrigation pathway dose.
2. In 2012, SRS began using the representative person dose instead of the Maximally Exposed Individual dose.
6.5 SPORTSMAN DOSE CALCULATION RESULTS

DOE Order 458.1 specifies radiation dose limits for individual members of the public. The dose limit of 100 mrem/yr includes the dose a person receives from routine DOE operations through all exposure pathways. Additionally, SRS considers and quantifies nontypical exposure pathways that are not included in the standard calculations of the doses to the representative person. This is because they apply to unlikely scenarios such as eating fish caught only from the mouths of SRS streams (“creek-mouth fish”) or to special scenarios such as hunters who volunteer to participate in an onsite hunt.

SRS also considered the following exposure pathways for a hypothetical offsite hunter and offsite fisherman on Creek Plantation, a neighboring, privately owned portion of the Savannah River Swamp:

- Ingesting deer meat or fish harvested on Creek Plantation
- Receiving external exposure to contaminated soil
- Incidentally ingesting contaminated soil
- Incidentally inhaling resuspended contaminated soil

6.5.1 Onsite Hunter Dose

Deer and Hog Consumption Pathway—SRS holds annual hunts for the public to control the Site’s deer and wild hog populations and to reduce animal-vehicle accidents. The estimated dose from consuming harvested deer or hog meat is determined for every onsite hunter. Table 6-6 presents the maximum potential dose an onsite hunter received in 2017 as 12.2 mrem (0.122 mSv), or 12.2% of DOE’s 100 mrem/yr dose limit. This dose is for an actual hunter who harvested two deer and one hog during the hunts. For the hunter-dose calculation, SRS conservatively assumes that this hunter individually consumed the entire edible portion, about 80 kilogram (kg) (178 lbs).

Turkey Consumption Pathway—SRS hosts a special turkey hunt in April for hunters with mobility impairments. Hunters harvested 26 turkeys in 2017. SRS measured all the turkeys for radiation. Because none of them measured above the background value, SRS did not assign a dose to these hunters.

6.5.2 Hypothetical Offsite Hunter Dose

Deer and Hog Consumption Pathway—The deer and hog consumption pathways considered were for hypothetical offsite individuals whose entire intake of meat (81 kg [179 lbs]) during the year was either deer or hog meat. SRS assumes that these individuals harvest deer or hogs that had lived on SRS during the year but then moved offsite prior to hunting season.

Based on these unlikely assumptions and on the measured average concentration of cesium-137 in all deer (0.95 pCi/g) and hogs (2.0 pCi/g) harvested from SRS during 2017, the potential maximum doses from this pathway were estimated to be 1.83 mrem (0.018 mSv) for the offsite deer hunter and 6.11 mrem (0.061 mSv) for the offsite hog hunter.
Radiological Dose Assessment

Savannah River Swamp Hunter Soil Exposure Pathway—SRS estimated the potential dose to a recreational hunter exposed to SRS legacy contamination on the privately owned Creek Plantation (See Section 5.7 of Chapter 5). The potential dose assumed that this person hunted for 120 hours during the year (8 hours a day for 15 days) at the location of maximum radionuclide contamination. SRS estimated this offsite-hunter soil exposure dose to be 1.86 mrem.

As Table 6-6 shows, the offsite hog consumption pathway dose (6.11 mrem) and the Savannah River Swamp hunter soil exposure pathway dose (1.86 mrem) were conservatively added together to obtain a total maximum offsite hunter dose of about 7.97 mrem (0.0797 mSv). This potential dose is about 8.0% of the DOE 100 mrem/yr dose limit.

<table>
<thead>
<tr>
<th>Table 6-6 2017 Sportsman Doses Compared to the DOE Dose Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sportsman Dose</td>
</tr>
<tr>
<td>Committed Dose (mrem)</td>
</tr>
<tr>
<td>Onsite Hunter</td>
</tr>
<tr>
<td>12.2</td>
</tr>
<tr>
<td>0.36</td>
</tr>
<tr>
<td>Savannah River Swamp Hunter</td>
</tr>
<tr>
<td>Offsite Hog Consumption</td>
</tr>
<tr>
<td>Offsite Deer Consumption</td>
</tr>
<tr>
<td>Soil Exposure</td>
</tr>
<tr>
<td>Maximum Offsite Hunter Dose (Hog + Soil Exposure)</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>Savannah River Swamp Fisherman</td>
</tr>
<tr>
<td>Steel Creek Fish Consumption</td>
</tr>
<tr>
<td>Soil Exposure</td>
</tr>
<tr>
<td>Total Offsite Fisherman Dose (Fish + Soil Exposure)</td>
</tr>
</tbody>
</table>

Notes:

a DOE dose limit; 100 mrem/yr (DOE Order 458.1)
b In 2017, the maximum dose to a hypothetical fisherman resulted from consuming catfish from the mouth of Lower Three Runs
c Includes the dose from combining external exposure and incidentally ingesting and inhaling the worst-case Savannah River swamp soil
d Includes the dose from combining external exposure and incidentally ingesting and inhaling Savannah River swamp soil near the mouth of Steel Creek.

6.5.3 Hypothetical Offsite Fisherman Dose

Creek-Mouth Fish Consumption Pathway—For 2017, SRS analyzed three species of fish (panfish, catfish, and bass) taken from the mouths of four SRS streams. Using these concentrations, SRS estimated the
maximum potential dose from fish consumption to be 0.36 mrem (0.0022 mSv) from catfish it collected at the mouth of Lower Three Runs. SRS bases this hypothetical dose on the low probability scenario that during 2017, a fisherman consumed 24 kg (53 lb) of bass caught exclusively from the mouth of Fourmile Branch. About 98% of this potential dose was from cesium-137.

Savannah River Swamp Fisherman Soil Exposure Pathway—SRS calculated the potential dose to a recreational fisherman exposed to SRS legacy contamination in Savannah River Swamp soil on the privately owned Creek Plantation using the RESidual RADioactivity (RESRAD) code (Yu et al., 2001). SRS assumes that this recreational sportsman fished on the South Carolina bank of the Savannah River near the mouth of Steel Creek for 250 hours during the year.

Using the radionuclide concentrations measured at this location, SRS estimated the potential dose to a fisherman from a combination of 1) external exposure to the contaminated soil, 2) incidental ingestion of the soil, and 3) incidental inhalation of renewed suspension soil to be 2.08 mrem (0.0208 mSv).

As Table 6-6 shows, the maximum Steel Creek fish consumption dose (0.13 mrem) and the Savannah River Swamp fisherman soil exposure dose (2.08 mrem) were added to conservatively obtain a total offsite fisherman dose of 2.21 mrem (0.0221 mSv). This potential dose is 2.21% of the DOE 100 mrem/yr dose limit.

6.5.4 Potential Risk from Consumption of SRS Creek-Mouth Fish

During 1991 and 1992, in response to a U.S. House of Representatives Appropriations Committee request for a plan to evaluate risk to the public from fish collected from the Savannah River, SRS developed a fish monitoring plan in conjunction with EPA, the Georgia Department of Natural Resources, and South Carolina Department of Health and Environmental Control (SCDHEC). This plan includes assessing radiological risk from consuming Savannah River fish and requires that SRS summarize the results in the annual *SRS Environmental Report*. SRS estimated the potential risks using the cancer morbidity risk coefficients from Federal Guidance Report No. 13 (EPA, 1999). For 2017, SRS estimated the maximum potential lifetime risk of developing fatal and nonfatal cancer from consuming SRS creek-mouth fish to be 2.7E-07. That is, if 10 million people each received a dose of 0.36 mrem, there is a potential for 2.7 extra cancer incidents.

6.6 RELEASE OF MATERIAL CONTAINING RESIDUAL RADIOACTIVITY

DOE Order 458.1 establishes authorized surface contamination limits for unconditional release of personal and real property. This order defines personal property as “property of any kind, except for real property” and defines real property as “land and anything permanently affixed to the land such as buildings, fences and those things attached to the buildings, such as light fixtures, plumbing and heating fixtures, or other such items, that would be personal property if not attached.” SRS handles the unconditional release of real property on an individual basis that requires specific approval from DOE. SRS did not release any real property in 2017, so the following discussion is associated with release of personal property from SRS. DOE Order 458.1 specifies that the Site must prepare and submit an annual summary of cleared property to the DOE-SR Manager.
6.6.1 Property Release Methodology

SRS uses procedures to govern unconditionally releasing equipment. SRS can release the item after it has a radiological survey if it meets specific documented limits. For items meeting unconditional release criteria, SRS generates a form and attaches it electronically to the applicable radiological survey via the Visual Survey Data System (VSDS). In some areas, SRS documents equipment and material release directly on the radiological survey form. SRS subsequently compiled these VSDS and survey forms and coordinated a site-wide review to determine the amount of material and equipment SRS released from its facilities in 2017. These measures ensure that radiological material releases from SRS are consistent with DOE Order 458.1 requirements.

SRS unconditionally released 14,498 items of personal property from radiological areas in 2017. Most of these items did not leave the Site and were reused elsewhere on the Site. However, all items required no additional radiological controls post-survey as they met DOE Order 458.1 release criteria (DOE Order 458.1 allows the use of DOE Order 5400.5-derived supplemental limits for unconditionally releasing equipment and materials.)

In 2003, DOE approved a SRS request to use supplemental limits to release material from the Site with no further DOE controls. These supplemental release limits, provided in Table 31 of Radiological Impact of 2017 Operations at the Savannah River Site (Jannik, Bell, and Dixon 2018), are dose-based and are such that if any member of the public received any exposure, it would be less than 1 mrem/yr. The supplemental limits include both surface and volume concentration criteria. The volume criteria allow SRS the option to dispose of potentially volume-contaminated material in Three Rivers Landfill, an onsite sanitary waste facility. In 2017, SRS did not release any material from the Site using the supplemental release limits volume concentration criteria.

6.7 RADIATION DOSE TO AQUATIC AND TERRESTRIAL BIOTA

DOE Order 458.1 requires that SRS conduct Site operations in a manner that protects the local biota from adverse effects of radiation and radioactive material releases. To demonstrate it is complying with this requirement, SRS uses the approved DOE Standard, DOE-STD-1153-2002, A Graded Approach for Evaluating Radiation Doses to Aquatic and Terrestrial Biota (DOE 2002).

The biota dose rate limits specified in this standard are the following:

- Aquatic animals: 1.0 rad/day (0.01 gray/day)
- Riparian animals: 0.1 rad/day (0.001 gray/day)
- Terrestrial plants: 1.0 rad/day (0.01 gray/day)
- Terrestrial animals: 0.1 rad/day (0.001 gray/day)

6.7.1 DOE Biota Concentration Guides

SRS evaluates plant and animal doses for water and land systems using the RESRAD Biota model (version 1.5) (SRS EDAM 2012), which directly implements the DOE (2002) guidance. The RESRAD Biota model uses a graded approach consisting of three increasingly more detailed steps of analysis:

- Level 1 Screening—uses maximum measured concentrations and conservative default model input parameters
- Level 2 Screening—uses average concentrations or site-specific input parameters, as appropriate
- Level 3 Analysis—uses site-specific biota parameters or measured concentrations in the actual biota living at the assessed location

For water systems (animals and plants who live in the water or along riverbanks), the RESRAD Biota model performs a combined water-plus-sediment evaluation. SRS performed initial (Level 1) screenings in 2017 using maximum radionuclide concentration data from SRS’s 14 onsite stream and sediment sampling locations. A sum of the fractions less than 1.0 indicates the sampling site has passed its initial pathway screening, which means that the sampling site did not exceed its biota dose rate limits, and SRS does not have to assess the location further. All SRS aquatic system location passed the initial screening and did not require further assessment.

To evaluate land-based systems, SRS performed initial screenings using concentration data from the five onsite radiological soil sampling locations. Typically, SRS collects and analyzes only one soil sample per year from each location. For 2017, all land-based locations passed their initial pathway screenings.