List of Figures

Figure 1-1	The Savannah River Site and Surrounding Area	1-4
Figure 2-1	Integrated Safety Management System Continual Improvement Framework	
	within the ISO 14001 Environmental Management System	2-3
Figure 2-2	SRS Environmental Management System and Sustainability Goals	2-8
Figure 2-3	GSA Fuel Consumption by Type for FY 2005 to FY 2022	2-17
Figure 2-4	SRS Performance in Meeting Fleet Management and Transportation Goals for 20	22 2-17
Figure 3-1	Remaining Ash and Coal Fines Operable Units	3-5
Figure 3-2	Processing and Dispositioning Radioactive Liquid Waste at SRS	3-9
Figure 3-3	Trench Installation to Bury Electrode Cables	3-15
Figure 3-4	Installation of ERT Electrode Cables	3-16
Figure 4-1	Types and Typical Locations of Nonradiological Sampling	4-3
Figure 4-2	NPDES Industrial Wastewater Outfall Sampling Locations	4-5
Figure 4-3	NPDES Industrial Stormwater Outfall Sampling Locations	4-7
Figure 4-4	Nonradiological Surface Water Sampling Locations	4-10
Figure 4-5	Nonradiological Sediment Sampling Locations	4-12
Figure 4-6	Average Mercury Concentration of Fish Species in the Savannah River,	
	Adjacent to the Savannah River Site	4-13
Figure 5-1	Types and Typical Locations of Radiological Sampling	5-3
Figure 5-2	10-Year History of SRS Annual Tritium Releases to the Air	5-7
Figure 5-3	Percent of Tritium Released to the Air for 2021 and 2022	5-7
Figure 5-4	Air Sampling Locations Surrounding SRS up to 25 Miles	5-9
Figure 5-5	Radiological Liquid Effluent Sampling Locations	5-14
Figure 5-6	10-Year History of Direct Releases of Tritium to SRS Streams	5-15
Figure 5-7	Radiological Surface Water Sampling Locations	5-16
Figure 5-8	10-Year Trend of Tritium in Pen Branch and Fourmile Branch	5-19
Figure 5-9	10-Year History of Tritium Migration from SRS Seepage Basins	
	and SWDF to SRS Streams	5-19
Figure 5-10	History of SRS Tritium Transport (1960 to 2022)	5-22
Figure 5-11	Offsite Drinking Water Sampling Locations	5-25
Figure 5-12	Tritium in Offsite Drinking Water and River Mile 141.5	5-26
Figure 5-13	Field Results versus Laboratory Results for Cs-137	5-29
Figure 5-14	Yearly Average Cs-137 Concentration in Wildlife, 1965-2022	5-29
Figure 5-15	2022 Gamma Overflight Survey of Creek Plantation	5-32
Figure 6-1	Exposure Pathways to Humans from Air and Liquid Effluents	6-4
Figure 6-2	2014–2018 Wind Rose Plot for H Area	6-5

List of Figures

Figure 6-3	Savannah River Annual Average Flow Rates Measured by USGS at River Mile 118.86-7
Figure 6-4	Radionuclide Contributions to the 2022 SRS Total Liquid Pathway Dose
	of 0.17 mrem (0.0017 mSv) 6-10
Figure 6-5	Radionuclide Contributions to the 2022 SRS Total Air Pathway Dose
	of 0.016 mrem (0.00016 mSv)
Figure 6-6	10-Year History of SRS Maximum Potential All-Pathway Doses
Figure 7-1	Groundwater at SRS7-3
Figure 7-2	How Contamination Gets to Soil and Groundwater
Figure 7-3	Groundwater Plumes at SRS
Figure 7-4	Locations of Tritium Monitoring Wells in Burke and Screven Counties, Georgia
Figure 7-5	Solvent Removed from A/M-Area Groundwater Plume7-13
Figure 8-1	Interrelationship between QA and QC Activities
Figure 9-1	PFAS Exposure Pathways
Figure 9-2	DOE's Approach to PFAS Rests on Four Pillars and Their Associated Goals
Figure 9-3	D-Area Wells and Surface Water Stations Sampled for PFAS Constituents