List of Figures

Figure 1-1	Timeline Depicting Key Milestones in SRS History	1-3
Figure 1-2	The Savannah River Site and Surrounding Areas	1-5
Figure 2-1	Integrated Safety Management System Continual Improvement Framework	
	within the ISO 14001 Environmental Management System	2-3
Figure 2-2	SRS Environmental Management System and Sustainability Goals	2-7
Figure 2-3	U.S. General Services Administration Fuel Consumption by Type	
	for FY 2005 to FY 2023	2-17
Figure 2-4	SRS Performance in Meeting Fleet Management and Transportation Goals	
	for FY 2023	2-17
Figure 3-1	Lower Three Runs IOU Ponds and Canal System	3-5
Figure 3-2	Lower Three Runs IOU Subunits	3-6
Figure 3-3	Processing and Dispositioning Radioactive Liquid Waste at SRS	3-10
Figure 3-4	SST Closure Plan, from Certification to Postclosure	3-15
Figure 3-5	RCRA Permit Renewal	3-16
Figure 4-1	Types and Typical Locations of Nonradiological Sampling	4-3
Figure 4-2	NPDES Industrial Wastewater Outfall Sampling Locations	4-6
Figure 4-3	NPDES Industrial Stormwater Outfall Sampling Locations	4-7
Figure 4-4	Nonradiological Surface Water Sampling Locations	4-10
Figure 4-5	Nonradiological Sediment Sampling Locations	4-12
Figure 4-6	Average Mercury Concentration of Fish Species in the Savannah River,	
	Adjacent to the Savannah River Site	4-14
Figure 5-1	Types and Typical Locations of Radiological Sampling	5-3
Figure 5-2	10-Year History of SRS Annual Tritium Releases to the Air	5-7
Figure 5-3	Percent of Tritium Released to the Air for 2022 and 2023	5-7
Figure 5-4	Air Sampling Locations Surrounding SRS Up to 25 Miles	5-8
Figure 5-5	Radiological Liquid Effluent Sampling Locations	5-14
Figure 5-6	10-Year History of Direct Releases of Tritium to SRS Streams	5-15
Figure 5-7	Radiological Surface Water Sampling Locations	5-17
Figure 5-8	10-Year Trend of Tritium in Pen Branch and Fourmile Branch	5-20
Figure 5-9	10-Year History of Tritium Migration from SRS Seepage Basins	
	and SWDF to SRS Streams	5-20
Figure 5-10	History of SRS Tritium Transport (1960–2023)	5-24
Figure 5-11	Offsite Drinking Water Sampling Locations	5-26
Figure 5-12	Tritium in Offsite Drinking Water and River Mile 141.5	5-27
Figure 5-13	Yearly Average Cesium-137 Concentration in Wildlife, 1965–2023	5-31

Figure 6-1	Exposure Pathways to Humans from Air and Liquid Effluents6-4
Figure 6-2	2014–2018 Wind Rose Plot for H Area6-6
Figure 6-3	Savannah River Annual Average Flow Rates Measured by USGS at River Mile 118.86-8
Figure 6-4	Radionuclide Contributions to the 2023 SRS Total Liquid Pathway Dose
	of 0.14 mrem (0.0014 mSv) 6-11
Figure 6-5	Radionuclide Contributions to the 2023 SRS Air Pathway Dose
	of 0.016 mrem (0.00016 mSv) 6-13
Figure 6-6	10-Year History of SRS Maximum Potential All-Pathway Doses6-15
Figure 7-1	Groundwater at SRS7-3
Figure 7-2	How Contamination Gets to Soil and Groundwater 7-4
Figure 7-3	Groundwater Plumes at SRS
Figure 7-4	Locations of Tritium Monitoring Wells in Burke and Screven Counties, Georgia 7-11
Figure 7-5	Solvent Removed from A/M-Area Groundwater Plume7-13
Figure 8-1	Interrelationship between QA and QC Activities 8-3
Figure 9-1	Key Dates in the Development and Regulation of PFAS in the United States 9-3
Figure 9-2	PFAS Exposure Pathways 9-4
Figure 9-3	DOE's Approach to PFAS Rests on Four Pillars and Their Associated Goals

xiv Savannah River Site